OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 14 — Jul. 15, 2013
  • pp: 17089–17096

Nanoscale dielectric-graphene-dielectric tunable infrared waveguide with ultrahigh refractive indices

Bofeng Zhu, Guobin Ren, Siwen Zheng, Zhen Lin, and Shuisheng Jian  »View Author Affiliations


Optics Express, Vol. 21, Issue 14, pp. 17089-17096 (2013)
http://dx.doi.org/10.1364/OE.21.017089


View Full Text Article

Enhanced HTML    Acrobat PDF (1062 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose in this paper a dielectric-graphene-dielectric tunable infrared waveguide based on multilayer metamaterials with ultrahigh refractive indices. The waveguide modes with different orders are systematically analyzed with numerical simulations based on both multilayer structures and effective medium approach. The waveguide shows hyperbolic dispersion properties from mid-infrared to far-infrared wavelength, which means the modes with ultrahigh mode indices could be supported in the waveguide. Furthermore, the optical properties of the waveguide modes could be tuned by the biased voltages on graphene layers. The waveguide may have various promising applications in the quantum cascade lasers and bio-sensing.

© 2013 OSA

OCIS Codes
(230.7370) Optical devices : Waveguides
(160.3918) Materials : Metamaterials
(310.4165) Thin films : Multilayer design
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Metamaterials

History
Original Manuscript: May 14, 2013
Revised Manuscript: June 15, 2013
Manuscript Accepted: June 28, 2013
Published: July 10, 2013

Virtual Issues
Vol. 8, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Bofeng Zhu, Guobin Ren, Siwen Zheng, Zhen Lin, and Shuisheng Jian, "Nanoscale dielectric-graphene-dielectric tunable infrared waveguide with ultrahigh refractive indices," Opt. Express 21, 17089-17096 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-14-17089


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science305(5685), 788–792 (2004). [CrossRef] [PubMed]
  2. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006). [CrossRef] [PubMed]
  3. Y. Liu, G. Bartal, and X. Zhang, “All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region,” Opt. Express16(20), 15439–15448 (2008). [CrossRef] [PubMed]
  4. Y. He, S. He, J. Gao, and X. Yang, “Nanoscale metamaterial optical waveguides with ultrahigh refractive indices,” J. Opt. Soc. Am. B29(9), 2559–2566 (2012). [CrossRef]
  5. F. Y. Meng, Q. Wu, and L. W. Li, “Transmission characteristics of wave modes in a rectangular waveguide filled with anisotropic metamaterial,” Appl. Phys., A Mater. Sci. Process.94(4), 747–753 (2009). [CrossRef]
  6. X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics6(7), 450–454 (2012). [CrossRef]
  7. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science306(5696), 666–669 (2004). [CrossRef] [PubMed]
  8. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438(7065), 197–200 (2005). [CrossRef] [PubMed]
  9. A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics6(11), 749–758 (2012). [CrossRef]
  10. F. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B87(7), 075416 (2013). [CrossRef]
  11. M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption,” Opt. Express21(6), 7614–7632 (2013). [CrossRef] [PubMed]
  12. G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A.109(23), 8834–8838 (2012). [CrossRef] [PubMed]
  13. G. V. Naik and A. Boltasseva, “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials (Amst.)5(1), 1–7 (2011). [CrossRef]
  14. C. Rizza, A. Ciattoni, E. Spinozzi, and L. Columbo, “Terahertz active spatial filtering through optically tunable hyperbolic metamaterials,” Opt. Lett.37(16), 3345–3347 (2012). [CrossRef] [PubMed]
  15. M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011). [CrossRef] [PubMed]
  16. J. Shin, J. T. Shen, and S. H. Fan, “Three-Dimensional Metamaterials with an Ultrahigh Effective Refractive Index over a Broad Bandwidth,” Phys. Rev. Lett.102(9), 093903 (2009). [CrossRef] [PubMed]
  17. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417(6885), 156–159 (2002). [CrossRef] [PubMed]
  18. R. Colombelli, F. Capasso, C. Gmachl, A. L. Hutchinson, D. L. Sivco, A. Tredicucci, M. C. Wanke, A. M. Sergent, and A. Y. Cho, “Far-infrared surface-plasmon quantum-cascade lasers at 21.5 μm and 24 μm wavelengths,” Appl. Phys. Lett.78(18), 2620 (2001). [CrossRef]
  19. M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature,” Science295(5553), 301–305 (2002). [CrossRef] [PubMed]
  20. R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics4(8), 495–497 (2010). [CrossRef]
  21. C. Xu, Y. Jin, L. Yang, J. Yang, and X. Jiang, “Characteristics of electro-refractive modulating based on Graphene-Oxide-Silicon waveguide,” Opt. Express20(20), 22398–22405 (2012). [CrossRef] [PubMed]
  22. G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys.103(6), 064302 (2008). [CrossRef]
  23. A. Vakil and N. Engheta, “Transformation Optics Using Graphene,” Science332(6035), 1291–1294 (2011). [CrossRef] [PubMed]
  24. T. Stauber, N. M. R. Peres, and A. K. Geim, “Optical conductivity of graphene in the visible region of the spectrum,” Phys. Rev. B78(8), 085432 (2008). [CrossRef]
  25. S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater.11(11), 936–941 (2012). [CrossRef] [PubMed]
  26. C. A. Foss, G. L. Hornyak, J. A. Stockert, and C. R. Martin, “Template-synthesized nanoscopic gold Particles: optical spectra and the effects of particle size and shape,” J. Phys. Chem.98(11), 2963–2971 (1994). [CrossRef]
  27. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007), Chap. 1.
  28. J. Yao, X. Yang, X. Yin, G. Bartal, and X. Zhang, “Three-dimensional nanometer-scale optical cavities of indefinite medium,” Proc. Natl. Acad. Sci. U.S.A.108(28), 11327–11331 (2011). [CrossRef] [PubMed]
  29. Y. Zou, P. Tassin, T. Koschny, and C. M. Soukoulis, “Interaction between graphene and metamaterials: split rings vs. wire pairs,” Opt. Express20(11), 12198–12204 (2012). [CrossRef] [PubMed]
  30. A. Satta, E. Simoen, T. Clarysse, T. Janssens, A. Benedetti, B. De Jaeger, M. Meuris, and W. Vandervorst, “Diffusion, activation, and recrystallization of boron implanted in preamorphized and crystalline germanium,” Appl. Phys. Lett.87(17), 172109 (2005). [CrossRef]
  31. M. Björk, J. Knoch, H. Schmid, H. Riel, and W. Riess, “Silicon nanowire tunneling field-effect transistors,” Appl. Phys. Lett.92(19), 193504 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited