OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 14 — Jul. 15, 2013
  • pp: 17122–17130

Control of the properties of micro-structured waveguides in lithium niobate crystal

Huseyin Karakuzu, Mykhaylo Dubov, and Sonia Boscolo  »View Author Affiliations


Optics Express, Vol. 21, Issue 14, pp. 17122-17130 (2013)
http://dx.doi.org/10.1364/OE.21.017122


View Full Text Article

Enhanced HTML    Acrobat PDF (1047 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study numerically depressed-index cladding, buried, micro-structured optical waveguides that can be formed in a lithium niobate crystal by femtosecond laser writing. We demonstrate to which extent the waveguiding properties can be controlled by the waveguide geometry at the relatively moderate induced refractive index contrasts that are typical of the direct femtosecond inscription.

© 2013 OSA

OCIS Codes
(130.3730) Integrated optics : Lithium niobate
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.7370) Optical devices : Waveguides

ToC Category:
Integrated Optics

History
Original Manuscript: June 4, 2013
Revised Manuscript: July 1, 2013
Manuscript Accepted: July 2, 2013
Published: July 10, 2013

Citation
Huseyin Karakuzu, Mykhaylo Dubov, and Sonia Boscolo, "Control of the properties of micro-structured waveguides in lithium niobate crystal," Opt. Express 21, 17122-17130 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-14-17122


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Suhara and M. Fujimura, Waveguide Nonlinear-Optic Devices (Springer-Verlag, 2003). [CrossRef]
  2. S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A77, 109–111 (2003). [CrossRef]
  3. R. Osellame, G. Cerullo, and R. Ramponi, eds., Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials, Topics in Applied Physics 123 (Springer-Verlag, 2012). [CrossRef]
  4. A. M. Streltsov, “Femtosecond-laser writing of tracks with depressed refractive index in crystals,” in Conference on Laser Micromachining for Optoelectronic Device Fabrication, A. Ostendorf, ed., Proc. SPIE4941, 51–57 (2003). [CrossRef]
  5. I. Bennion, M. Dubov, I. Khruschev, A. Okhrimchuck, and A. Shestakov, “Laser inscription of optical structures in crystals,” Patent WO 2005040874 A2 (2005), http://www.google.com/patents/WO2005040874A2 .
  6. A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, and J. Mitchell, “Depressed cladding, buried waveguide laser formed in a YAG: Nd3+ crystal by femtosecond laser writing,” Opt. Lett.30, 2248–2250, (2005). [CrossRef] [PubMed]
  7. J. Thomas, M. Heinrich, J. Burghoff, S. Nolte, A. Ancona, and A. Tüennermann, “Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate,” Appl. Phys. Lett.91, 2799178, (2007). [CrossRef]
  8. J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys. A86, 165–170 (2007). [CrossRef]
  9. S. Campbell, R. R. Thomson, D. P. Hand, A. K. Kar, D. T. Reid, C. Canalias, V. Pasiskevicius, and F. Laurell, “Frequency-doubling in femtosecond laser inscribed periodically-poled potassium titanyl phosphate waveguides,” Opt. Express15, 17146–17150 (2007). [CrossRef] [PubMed]
  10. Q. An, Y. Ren, Y. Jia, J. R. Vázquez de Aldana, and F. Chen, “Mid-infrared waveguides in zinc sulfide crystal,” Opt. Mater. Express, 3, 466–471 (2013). [CrossRef]
  11. F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser & Photon. Rev. doi: (2013). [CrossRef]
  12. S. Juodkazis, M. Sudzius, V. Mizeikis, H. Misawab, E. G. Gamaly, Y. Liu, O. A. Louchev, and K. Kitamura, “Three-dimensional recording by tightly focused femtosecond pulses in LiNbO3,” Appl. Phys. Lett.89, 062903 (2006). [CrossRef]
  13. S. Juodkazis and H. Misawa, “Laser processing of sapphire by strongly focused femtosecond pulses,” Appl. Phys. A93, 857–861 (2008). [CrossRef]
  14. R. Graf, A. Fernandez, M. Dubov, H. J. Brueckner, B. N. Chichkov, and A. Apolonski, “Pearl-chain waveguides written at megahertz repetition rate,” Appl. Phys. B87, 21–27 (2007). [CrossRef]
  15. T. Allsop, M. Dubov, V. Mezentsev, and I. Bennion, “Inscription and characterization of waveguides written into borosilicate glass by a high-repetition-rate femtosecond laser at 800nm,” Appl. Opt.49, 1938–1950 (2010). [CrossRef] [PubMed]
  16. A. G. Okhrimchuk, V. K. Mezentsev, H. Schmitz, M. Dubov, and I. Bennion, “Cascaded nonlinear absorption of femtosecond laser pulses in dielectrics,” Laser Phys.19, 1415–1422 (2009). [CrossRef]
  17. A. Okhrimchuk, V. Mezentsev, A. Shestakov, and I. Bennion, “Low loss depressed cladding waveguide inscribed in YAG:Nd single crystal by femtosecond laser pulses,” Opt. Express20, 3832–3843 (2012). [CrossRef] [PubMed]
  18. J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys. A89, 127–132 (2007). [CrossRef]
  19. L. Dong, W. Wong, and M. E. Fermann, “Single mode propagation in fibers and rods with large leakage channels,” Patent US 2013/0089113 A1 (2013), http://www.google.co.uk/patents/US7787729 .
  20. N. Dong, F. Chen, and J. R. Vázquez de Aldana, “Efficient second harmonic generation by birefriengent phase matching in femtosecond laser inscribed KTP cladding waveguides,” Phys. Status Solidi: Rapid Research Lett.6, 306–308 (2012). [CrossRef]
  21. Y. Jia, J. R. Vázquez de Aldana, C. Romero, Y. Ren, Q. Lu, and F. Chen, “Femtosecond-laser-inscribed BiB3O6 nonlinear cladding waveguide for second-harmonic generation,” Appl. Phys. Express5, 072701 (2012). [CrossRef]
  22. F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, D. Felbacq, A. Argyros, and S. Leon-Saval, Foundations of Photonic Crystal Fibres (Imperial College, 2012).
  23. T. P. White, R. C. McPhedran, C. M. de Sterke, and M. J. Steel, “Confinement losses in microstructured optical fibers,” Opt. Lett.26, 488–490 (2001). [CrossRef]
  24. G. Renversez, B. Kuhlmey, and R. McPhedran, “Dispersion management with microstructured optical fibers: ultraflatteend chromatic dispersion with low losses,” Opt. Lett.28, 989–991 (2003). [CrossRef] [PubMed]
  25. A. V. Turchin, M. Dubov, and J. A. R. Williams, “3D reconstruction of the complex dielectric function of glass during femtosecond laser micro-fabrication,” Opt. & Quantum Electron.42, 873–886 (2011). [CrossRef]
  26. D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer-Verlag, 2005).
  27. D. E. Zelmon, D. L. Small, and D. Jundt, “Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol.% magnesium oxide-doped lithium niobate,” J. Opt. Soc. Am. B14, 3319–3322 (1997). [CrossRef]
  28. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, CA, 1989).
  29. Y. Tsuji and M. Koshiba, “Guided-mode and leaky-mode analysis by imaginary distance beam propagation method based on finite element scheme,” J. Lightwave Technol.18618–623 (2000). [CrossRef]
  30. A. Oskooi and S. G. Johnson, “Distinguishing correct from incorrect PML proposals and a corrected unsplit PML for anisotropic, dispersive media,” J. Comput. Phys.230, 2369–2377 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited