OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 14 — Jul. 15, 2013
  • pp: 17150–17160

Near- and far-field spectroscopic imaging investigation of resonant square-loop infrared metasurfaces

Jeffrey D’ Archangel, Eric Tucker, Ed Kinzel, Eric A. Muller, Hans A. Bechtel, Michael C. Martin, Markus B. Raschke, and Glenn Boreman  »View Author Affiliations


Optics Express, Vol. 21, Issue 14, pp. 17150-17160 (2013)
http://dx.doi.org/10.1364/OE.21.017150


View Full Text Article

Enhanced HTML    Acrobat PDF (2325 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical metamaterials have unique properties which result from geometric confinement of the optical conductivity. We developed a series of infrared metasurfaces based on an array of metallic square loop antennas. The far-field absorption spectrum can be designed with resonances across the infrared by scaling the geometric dimensions. We measure the amplitude and phase of the resonant mode as standing wave patterns within the square loops using scattering-scanning near-field optical microscopy (s-SNOM). Further, using a broad-band synchrotron-based FTIR microscope and s-SNOM at the Advanced Light Source, we are able to correlate far-field spectra to near-field modes of the metasurface as the resonance is tuned between samples. The results highlight the importance of multi-modal imaging for the design and characterization of optical metamaterials.

© 2013 OSA

OCIS Codes
(260.3910) Physical optics : Metal optics
(260.5740) Physical optics : Resonance
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms
(160.3918) Materials : Metamaterials
(180.4243) Microscopy : Near-field microscopy
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Metamaterials

History
Original Manuscript: April 16, 2013
Revised Manuscript: July 2, 2013
Manuscript Accepted: July 4, 2013
Published: July 11, 2013

Citation
Jeffrey D’ Archangel, Eric Tucker, Ed Kinzel, Eric A. Muller, Hans A. Bechtel, Michael C. Martin, Markus B. Raschke, and Glenn Boreman, "Near- and far-field spectroscopic imaging investigation of resonant square-loop infrared metasurfaces," Opt. Express 21, 17150-17160 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-14-17150


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Butt, Q. Dai, N. Lal, T. D. Wilkinson, J. J. Baumberg, and G. A. J. Amaratunga, “Metamaterial filter for the near-visible spectrum,” Appl. Phys. Lett.101(8), 083106 (2012). [CrossRef]
  2. X. Li, L. Yang, C. Hu, X. Luo, and M. Hong, “Tunable bandwidth of band-stop filter by metamaterial cell coupling in optical frequency,” Opt. Express19(6), 5283–5289 (2011). [CrossRef] [PubMed]
  3. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96(25), 251104 (2010). [CrossRef]
  4. G. D’Aguanno, N. Mattiucci, A. Alù, C. Argyropoulos, J. V. Foreman, and M. J. Bloemer, “Thermal emission from a metamaterial wire medium slab,” Opt. Express20(9), 9784–9789 (2012). [CrossRef] [PubMed]
  5. J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett.98(24), 241105 (2011). [CrossRef]
  6. S. Larouche, Y. J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial phase holograms,” Nat. Mater.11(5), 450–454 (2012). [CrossRef] [PubMed]
  7. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334(6054), 333–337 (2011). [CrossRef] [PubMed]
  8. L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett.12(11), 5750–5755 (2012). [CrossRef] [PubMed]
  9. G. Biener, A. Niv, V. Kleiner, and E. Hasman, “Metallic subwavelength structures for a broadband infrared absorption control,” Opt. Lett.32(8), 994–996 (2007). [CrossRef] [PubMed]
  10. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011). [CrossRef] [PubMed]
  11. J. Ginn, B. Lail, J. Alda, and G. Boreman, “Planar infrared binary phase reflectarray,” Opt. Lett.33(8), 779–781 (2008). [CrossRef] [PubMed]
  12. S. L. Wadsworth, P. G. Clem, E. D. Branson, and G. D. Boreman, “Broadband circularly-polarized infrared emission from multilayer metamaterials,” Opt. Mater. Express1(3), 466–479 (2011). [CrossRef]
  13. C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” Ant. Propagat. Mag.54(2), 10–35 (2012). [CrossRef]
  14. Q. Feng, M. Pu, C. Hu, and X. Luo, “Engineering the dispersion of metamaterial surface for broadband infrared absorption,” Opt. Lett.37(11), 2133–2135 (2012). [CrossRef] [PubMed]
  15. T. Zentgraf, J. Dorfmüller, C. Rockstuhl, C. Etrich, R. Vogelgesang, K. Kern, T. Pertsch, F. Lederer, and H. Giessen, “Amplitude- and phase-resolved optical near fields of split-ring-resonator-based metamaterials,” Opt. Lett.33(8), 848–850 (2008). [CrossRef] [PubMed]
  16. P. Alonso-Gonzalez, M. Schnell, P. Sarriugarte, H. Sobhani, C. Wu, N. Arju, A. Khanikaev, F. Golmar, P. Albella, L. Arzubiaga, F. Casanova, L. E. Hueso, P. Nordlander, G. Shvets, and R. Hillenbrand, “Real-space mapping of Fano interference in plasmonic metamolecules,” Nano Lett.11(9), 3922–3926 (2011). [CrossRef] [PubMed]
  17. E. C. Kinzel, J. C. Ginn, R. L. Olmon, D. J. Shelton, B. A. Lail, I. Brener, M. B. Sinclair, M. B. Raschke, and G. D. Boreman, “Phase resolved near-field mode imaging for the design of frequency-selective surfaces,” Opt. Express20(11), 11986–11993 (2012). [CrossRef] [PubMed]
  18. M. Schnell, A. Garcia-Extarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics3(5), 287–291 (2009). [CrossRef]
  19. R. L. Olmon, M. Rang, P. M. Krenz, B. A. Lail, L. V. Saraf, G. D. Boreman, and M. B. Raschke, “Determination of electric-field, magnetic-field, and electric-current distributions of infrared optical antennas: a near-field optical vector network analyzer,” Phys. Rev. Lett.105(16), 167403 (2010). [CrossRef] [PubMed]
  20. P. M. Krenz, R. L. Olmon, B. A. Lail, M. B. Raschke, and G. D. Boreman, “Near-field measurement of infrared coplanar strip transmission line attenuation and propagation constants,” Opt. Express18(21), 21678–21686 (2010). [CrossRef] [PubMed]
  21. M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics5(5), 283–287 (2011). [CrossRef]
  22. R. L. Olmon, P. M. Krenz, A. C. Jones, G. D. Boreman, and M. B. Raschke, “Near-field imaging of optical antenna modes in the mid-infrared,” Opt. Express16(25), 20295–20305 (2008). [CrossRef] [PubMed]
  23. R. L. Olmon, H. A. Bechtel, M. C. Martin, and M. B. Raschke, (in preparation).
  24. H. A. Bechtel, M. C. Martin, T. E. May, and P. Lerch, “Improved spatial resolution for reflection mode infrared microscopy,” Rev. Sci. Instrum.80(12), 126106 (2009). [CrossRef] [PubMed]
  25. F. Huth, A. Govyadinov, S. Amarie, W. Nuansing, F. Keilmann, and R. Hillenbrand, “Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution,” Nano Lett.12(8), 3973–3978 (2012). [CrossRef] [PubMed]
  26. X. G. Xu and M. B. Raschke, “Near-field infrared vibrational dynamics and tip-enhanced decoherence,” Nano Lett.13(4), 1588–1595 (2013). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited