OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 14 — Jul. 15, 2013
  • pp: 17176–17185

Plasmon resonances and strong electric field enhancements in side-by-side tangent nanospheroid homodimers

J. N. Li, T. Z. Liu, H. R. Zheng, F. Gao, J. Dong, Z. L. Zhang, and Z. Y. Zhang  »View Author Affiliations


Optics Express, Vol. 21, Issue 14, pp. 17176-17185 (2013)
http://dx.doi.org/10.1364/OE.21.017176


View Full Text Article

Enhanced HTML    Acrobat PDF (1583 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The plasmon resonance and electric field enhancement in a side-by-side tangent nanospheroid homodimer (TNSHD) have been investigated theoretically by using DDA and FDTD methods, respectively. The simulation results indicate that this side-by-side TNSHD has its novel optical properties. We find that the plasmon resonance with a distinct Fano lineshape can be achieved and the electric field intensity can be enhanced strongly. The tunability of the Fano resonance could provide important applications in biosensing. The obtained electric field enhancement might open a promising pathway for surface-enhanced Raman scattering (SERS) and light trapping in solar cells.

© 2013 OSA

OCIS Codes
(250.5403) Optoelectronics : Plasmonics
(240.6695) Optics at surfaces : Surface-enhanced Raman scattering

ToC Category:
Optics at Surfaces

History
Original Manuscript: April 17, 2013
Revised Manuscript: June 13, 2013
Manuscript Accepted: June 28, 2013
Published: July 11, 2013

Citation
J. N. Li, T. Z. Liu, H. R. Zheng, F. Gao, J. Dong, Z. L. Zhang, and Z. Y. Zhang, "Plasmon resonances and strong electric field enhancements in side-by-side tangent nanospheroid homodimers," Opt. Express 21, 17176-17185 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-14-17176


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  2. V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev.37(9), 1792–1805 (2008). [CrossRef] [PubMed]
  3. M. Rycenga, C. M. Cobley, J. Zeng, W. Y. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. N. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev.111(6), 3669–3712 (2011). [CrossRef] [PubMed]
  4. H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett.6(4), 827–832 (2006). [CrossRef] [PubMed]
  5. T. Deng, J. R. Cournoyer, J. H. Schermerhorn, J. Balch, Y. Du, and M. L. Blohm, “Generation and assembly of spheroid-like particles,” J. Am. Chem. Soc.130(44), 14396–14397 (2008). [CrossRef] [PubMed]
  6. M. Kruszynska, H. Borchert, A. Bachmatiuk, M. H. Rümmeli, B. Büchner, J. Parisi, and J. Kolny-Olesiak, “Size and shape control of colloidal copper(I) sulfide nanorods,” ACS Nano6(7), 5889–5896 (2012). [CrossRef] [PubMed]
  7. C. Liusman, S. Z. Li, X. D. Chen, W. Wei, H. Zhang, G. C. Schatz, F. Boey, and C. A. Mirkin, “Free-standing bimetallic nanorings and nanoring arrays made by on-wire lithography,” ACS Nano4(12), 7676–7682 (2010). [CrossRef] [PubMed]
  8. S. P. Zhang, K. Bao, N. J. Halas, H. X. Xu, and P. Nordlander, “Substrate-induced fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett.11(4), 1657–1663 (2011). [CrossRef] [PubMed]
  9. J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett.8(4), 1212–1218 (2008). [CrossRef] [PubMed]
  10. B. Willingham and S. Link, “Energy transport in metal nanoparticle chains via sub-radiant plasmon modes,” Opt. Express19(7), 6450–6461 (2011). [CrossRef] [PubMed]
  11. R. B. Dunbar, T. Pfadler, and L. Schmidt-Mende, “Highly absorbing solar cells--a survey of plasmonic nanostructures,” Opt. Express20(S2Suppl 2), A177–A189 (2012). [CrossRef] [PubMed]
  12. W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic fano switch,” Nano Lett.12(9), 4977–4982 (2012). [CrossRef] [PubMed]
  13. M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett.98(2), 026104 (2007). [CrossRef] [PubMed]
  14. S. H. Yeom, O. G. Kim, B. H. Kang, K. J. Kim, H. Yuan, D. H. Kwon, H. R. Kim, and S. W. Kang, “Highly sensitive nano-porous lattice biosensor based on localized surface plasmon resonance and interference,” Opt. Express19(23), 22882–22891 (2011). [CrossRef] [PubMed]
  15. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010). [CrossRef] [PubMed]
  16. K. C. Woo, L. Shao, H. J. Chen, Y. Liang, J. F. Wang, and H. Q. Lin, “Universal scaling and fano resonance in the plasmon coupling between gold nanorods,” ACS Nano5(7), 5976–5986 (2011). [CrossRef] [PubMed]
  17. A. McLeod, A. Weber-Bargioni, Z. Zhang, S. Dhuey, B. Harteneck, J. B. Neaton, S. Cabrini, and P. J. Schuck, “Nonperturbative visualization of nanoscale plasmonic field distributions via photon localization microscopy,” Phys. Rev. Lett.106(3), 037402 (2011). [CrossRef] [PubMed]
  18. N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Y. Zhang, and B. H. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett.10(12), 4952–4955 (2010). [CrossRef] [PubMed]
  19. L. Shao, K. C. Woo, H. J. Chen, Z. Jin, J. F. Wang, and H. Q. Lin, “Angle- and energy-resolved plasmon coupling in gold nanorod dimers,” ACS Nano4(6), 3053–3062 (2010). [CrossRef] [PubMed]
  20. P. K. Jain, S. Eustis, and M. A. El-Sayed, “Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model,” J. Phys. Chem. B110(37), 18243–18253 (2006). [CrossRef] [PubMed]
  21. C. Tabor, D. Van Haute, and M. A. El-Sayed, “Effect of orientation on plasmonic coupling between gold nanorods,” ACS Nano3(11), 3670–3678 (2009). [CrossRef] [PubMed]
  22. A. M. Funston, C. Novo, T. J. Davis, and P. Mulvaney, “Plasmon coupling of gold nanorods at short distances and in different geometries,” Nano Lett.9(4), 1651–1658 (2009). [CrossRef] [PubMed]
  23. A. Lee, A. Ahmed, D. P. dos Santos, N. Coombs, J. I. Park, R. Gordon, A. G. Brolo, and E. Kumacheva, “Side-by-side assembly of gold nanorods reduces ensemble-averaged SERS intensity,” J. Phys. Chem. C116(9), 5538–5545 (2012). [CrossRef]
  24. B. T. Draine and P. J. Flatau, “User guide for the discrete dipole approximation code DDSCAT 7.0,” 2009, http://arxiv.org/abs/0809.0337v5 .
  25. M. J. Collinge and B. T. Draine, “Discrete-dipole approximation with polarizabilities that account for both finite wavelength and target geometry,” J. Opt. Soc. Am. A21(10), 2023–2028 (2004). [CrossRef] [PubMed]
  26. V. Amendola, O. M. Bakr, and F. Stellacci, “A study of the surface plasmon resonance of silver nanoparticles by the discrete dipole approximation method: effect of shape, size, structure, and assembly,” Plasmonics5(1), 85–97 (2010). [CrossRef]
  27. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd. ed. (Artech House, Inc.: Norwood, M.A., 2005).
  28. B. Z. Packard, D. D. Toptygin, A. Komoriya, and L. Brand, “Intramolecular resonance dipole-dipole interactions in a profluorescent protease substrate,” J. Phys. Chem. B102(4), 752–758 (1998). [CrossRef]
  29. D. E. Gómez, A. Roberts, T. J. Davis, and K. C. Vernon, “Surface plasmon hybridization and exciton coupling,” Phys. Rev. B86(3), 035411 (2012). [CrossRef]
  30. B. Auguié, J. L. Alonso-Gómez, A. Guerrero-Martínez, and L. M. Liz-Marzán, “Fingers crossed: optical activity of a chiral dimer of plasmonic nanorods,” J. Phys. Chem. Lett.2(8), 846–851 (2011). [CrossRef]
  31. A. Artar, A. A. Yanik, and H. Altug, “Directional double Fano resonances in plasmonic hetero-oligomers,” Nano Lett.11(9), 3694–3700 (2011). [CrossRef] [PubMed]
  32. M. Kasha, H. R. Rawls, and M. Ashraf El-Bayoumi, “The exciton model in molecular spectroscopy,” Pure Appl. Chem.11(3-4), 371–392 (1965). [CrossRef]
  33. Y. C. Chang, S. M. Wang, H. C. Chung, C. B. Tseng, and S. H. Chang, “Observation of absorption-dominated bonding dark plasmon mode from metal-insulator-metal nanodisk arrays fabricated by nanospherical-lens lithography,” ACS Nano6(4), 3390–3396 (2012). [CrossRef] [PubMed]
  34. J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science328(5982), 1135–1138 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited