OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 14 — Jul. 15, 2013
  • pp: 17195–17211

Probing terahertz metamaterials with subwavelength optical fibers

Martin Girard and Maksim Skorobogatiy  »View Author Affiliations

Optics Express, Vol. 21, Issue 14, pp. 17195-17211 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (4966 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Transmission through a subwavelength terahertz fiber, which is positioned in parallel to a frequency selective surface, is studied using several finite element tools. Both the band diagram technique and the port-based scattering matrix technique are used to explain the nature of various resonances in the fiber transmission spectrum. First, we observe that spectral positions of most of the transmission peaks in the port-based simulation can be related to the positions of Van Hove singularities in the band diagram of a corresponding infinite periodic system. Moreover, spectral shape of most of the features in the fiber transmission spectrum can be explained by superposition of several Fano-type resonances. We also show that center frequencies and bandwidths of these resonances and, as a consequence, spectral shape of the resulting transmission features can be tuned by varying the fiber-metamaterial separation.

© 2013 OSA

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(160.3918) Materials : Metamaterials
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:

Original Manuscript: April 22, 2013
Revised Manuscript: June 25, 2013
Manuscript Accepted: July 1, 2013
Published: July 11, 2013

Martin Girard and Maksim Skorobogatiy, "Probing terahertz metamaterials with subwavelength optical fibers," Opt. Express 21, 17195-17211 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Zhao and A. Alù, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B84(20), 205428 (2011). [CrossRef]
  2. D. F. Sievenpiper, J. H. Schaffner, H. J. Song, R. Y. Loo, and G. Tangonan, “Two-dimensional beam steering using an electrically tunable impedance surface,” IEEE Trans. Antenn. Propag.51(10), 2713–2722 (2003). [CrossRef]
  3. A. Alù, “Mantle cloak: invisibility induced by a surface,” Phys. Rev. B80(24), 245115 (2009). [CrossRef]
  4. I. A. I. Al-Naib, C. Jansen, N. Born, and M. Koch, “Polarization and angle independent terahertz metamaterials with high Q-factors,” Appl. Phys. Lett.98(9), 091107 (2011). [CrossRef]
  5. C. Jansen, I. A. I. Al-Naib, N. Born, and M. Koch, “Terahertz metasurfaces with high Q-factors,” Appl. Phys. Lett.98(5), 051109 (2011). [CrossRef]
  6. M. Skorobogatiy and J. Yang, Fundamentals of Photonic Crystal Guiding (Cambridge University, 2008).
  7. J. Han and A. Lakhtakia, “Semiconductor split-ring resonators for thermally tunable terahertz metamaterials,” J. Mod. Opt.56(4), 554–557 (2009). [CrossRef]
  8. K. Aydin, I. M. Pryce, and H. A. Atwater, “Symmetry breaking and strong coupling in planar optical metamaterials,” Opt. Express18(13), 13407–13417 (2010). [CrossRef] [PubMed]
  9. Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics62(55 Pt B), 7389–7404 (2000). [CrossRef] [PubMed]
  10. D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A69(6), 063804 (2004). [CrossRef]
  11. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett.96(12), 123901 (2006). [CrossRef] [PubMed]
  12. S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A20(3), 569–572 (2003). [CrossRef] [PubMed]
  13. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010). [CrossRef]
  14. L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, and S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: A coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett.108(8), 083902 (2012). [CrossRef] [PubMed]
  15. S. H. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B65(23), 235112 (2002). [CrossRef]
  16. A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vucković, “Dipole induced transparency in waveguide coupled photonic crystal cavities,” Opt. Express16(16), 12154–12162 (2008). [CrossRef] [PubMed]
  17. R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett.104(24), 243902 (2010). [CrossRef] [PubMed]
  18. B. Ung, A. Mazhorova, A. Dupuis, M. Rozé, and M. Skorobogatiy, “Polymer microstructured optical fibers for terahertz wave guiding,” Opt. Express19(26), B848–B861 (2011). [CrossRef] [PubMed]
  19. M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-fiber technology: toward multifunctional optical nanoprobes,” ACS Nano6(4), 3163–3170 (2012). [CrossRef] [PubMed]
  20. T. Srivastava, R. Das, and R. Jha, “Highly accurate and sensitive surface plasmon resonance sensor based on channel photonic crystal waveguides,” Sens. Actuators B Chem.157(1), 246–252 (2011). [CrossRef]
  21. M. Skorobogatiy, Nanostructured and Subwavelength Waveguides (Wiley, 2012).
  22. S. H. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett.80(6), 908–910 (2002). [CrossRef]
  23. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).
  24. M. A. Popovic, C. Manolatou, and M. R. Watts, “Coupling-induced resonance frequency shifts in coupled dielectric multi-cavity filters,” Opt. Express14(3), 1208–1222 (2006). [CrossRef] [PubMed]
  25. H. Haus, W. P. Huang, S. Kawakami, and N. Whitaker, “Coupled-mode theory of optical waveguides,” J. Lightwave Technol.5(1), 16–23 (1987). [CrossRef]
  26. M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett.35(10), 1593–1595 (2010). [CrossRef] [PubMed]
  27. H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics3(3), 148–151 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited