OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 14 — Jul. 15, 2013
  • pp: 17275–17284

Enhancement of multi-pulse laser induced damage threshold on Cu mirror under vacuum condition

Shin Kajita, Ryo Yasuhara, Masaya Sato, Noriyasu Ohno, Masayuki Tokitani, and Naoaki Yoshida  »View Author Affiliations


Optics Express, Vol. 21, Issue 14, pp. 17275-17284 (2013)
http://dx.doi.org/10.1364/OE.21.017275


View Full Text Article

Enhanced HTML    Acrobat PDF (6023 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Multi-pulse laser induced damage threshold (LIDT) for metallic mirrors are important issue for laser diagnostics in future fusion devices. In this paper, the mechanism of multi-pulse LIDT and the influence of the slip formation and oxidization in atmosphere were investigated experimentally with a Nd:YAG pulse laser whose pulse width and wavelength are ∼5 ns and 1064 nm, respectively. From detailed surface analysis of laser irradiated part by transmission electron microscopy (TEM), it was found that the miniaturization of crystal size and slip formation were observed on damaged area. Oxidization feature was also revealed from the TEM analysis. It was shown that the multi-pulse LIDT could be increased under vacuum condition compared with that in air atmosphere.

© 2013 OSA

OCIS Codes
(160.0160) Materials : Materials
(160.3900) Materials : Metals

ToC Category:
Materials

History
Original Manuscript: May 29, 2013
Revised Manuscript: June 25, 2013
Manuscript Accepted: June 27, 2013
Published: July 11, 2013

Citation
Shin Kajita, Ryo Yasuhara, Masaya Sato, Noriyasu Ohno, Masayuki Tokitani, and Naoaki Yoshida, "Enhancement of multi-pulse laser induced damage threshold on Cu mirror under vacuum condition," Opt. Express 21, 17275-17284 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-14-17275


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. V. Orlinski, V. S. Voitsenya, and K. Y. Vukolov, “First mirrors for diagnostic systems of an experimental fusion reactor i. simulation mirror tests under neutron and ion bombardment,” Plasma Devices and Operations15, 33–75 (2007). [CrossRef]
  2. D. V. Orlinski, V. S. Voitsenya, and K. Y. Vukolov, “First mirrors for diagnostic systems of an experimental fusion reactor ii. the mirror tests on the large fusion devices under operation,” Plasma Dev. Operations15, 127–146 (2007). [CrossRef]
  3. A. Litnovsky, M. Laengner, M. Matveeva, C. Schulz, L. Marot, V. Voitsenya, V. Philipps, W. Biel, and U. Samm, “Development of in situ cleaning techniques for diagnostic mirrors in ITER,” Fusion Eng. and Des.86, 1780–1783 (2011). [CrossRef]
  4. A. Widdowson, J. Coad, G. de Temmerman, D. Farcage, D. Hole, D. Ivanova, A. Leontyev, M. Rubel, A. Semerok, A. Schmidt, and P.-Y. Thro, “Removal of beryllium-containing films deposited in JET from mirror surfaces by laser cleaning,” J. Nucl. Mater.415, S1199–S1202 (2011). [CrossRef]
  5. V. S. Voitsenya, V. G. Konovalov, M. F. Becker, O. Motojima, K. Narihara, and B. Schunke, “Materials selection for the in situ mirrors of laser diagnostics in fusion devices,” Rev. Sci. Instrum.70, 2016–2025 (1999). [CrossRef]
  6. S. Kajita, T. Hatae, and O. Naito, “Optimization of optical filters for ITER edge thomson scattering diagnostics,” Fusion Eng. and Des.84, 2214–2220 (2009). [CrossRef]
  7. T. Hatae, J. Howard, N. Ebizuka, H. Yoshida, M. Nakatsuka, H. Fujita, K. Narihara, I. Yamada, H. Funaba, Y. Hirano, H. Koguchi, S. Kajita, and O. Naito, “Progress in development of the advanced thomson scattering diagnostics,” Journal of Physics: Conference Series227, 012002 (2010). [CrossRef]
  8. S. Kajita, T. Hatae, and V. S. Voitsenya, “Assessment of laser transmission mirror materials for ITER edge Thomson scattering diagnostics,” Plasma Fusion Research3, 032 (2008). [CrossRef]
  9. C. S. Lee, N. Koumvakalis, and M. Bass, “A theoretical model for multiple-pulse laser-induced damage to metal mirrors,” J. Appl. Phys.54, 5727–5731 (1983). [CrossRef]
  10. A. Gorshkov, I. Bel’bas, M. Maslov, V. Sannikov, and K. Vukolov, “Laser damage investigations of Cu mirrors,” Fusion Eng. and Des.74, 859–863 (2005). [CrossRef]
  11. M. Sato, S. Kajita, R. Yasuhara, N. Ohno, and Y. Tawara, “Assessment of multi-pulse laser-induced damage threshold of metallic mirrors for thomson scattering system,” Optics Express21, 9333–9342 (2013). [CrossRef] [PubMed]
  12. J. F. Figueira and S. J. Thomas, “Damage thresholds at metal surfaces for short pulse IR lasers,” IEEE J. Quantum Electron.18, 1381 (1982). [CrossRef]
  13. V. S. Voitsenya, V. G. Konovalov, A. F. Shtan’, S. I. Solodovchenko, M. F. Becker, A. F. Bardamid, K. I. Yakimov, V. T. Gritsyna, and D. V. Orlinskij, “Some problems of the material choice for the first mirrors of plasma diagnostics in a fusion reactor,” Rev. Sci. Instrum.70, 790–793 (1999). [CrossRef]
  14. J. Linke, P. Lorenzetto, P. Majerus, M. Merola, D. Pitzer, and M. Rödig, “EU development of high heat flux components,” Fusion Sci. Technol.47, 678–685 (2005).
  15. M. F. Becker, C. Ma, and R. M. Walser, “Predicting multipulse laser-induced failure for molybdenum metal mirrors,” Appl. Opt.30, 5239–5246 (1991). [CrossRef] [PubMed]
  16. J. Porteus, D. Decker, W. Faith, D. Grandjean, S. Seitel, and M. J. Soileau, M. J. “Pulsed laser-induced melting of precision diamond-machined Cu, Ag, and Au at infrared wavelengths,” IEEE J. Quantum Electron.17, 2078–2085 (1991). [CrossRef]
  17. S. Kajita, S. Takamura, N. Ohno, and T. Nishimoto, “Alleviation of helium holes/bubbles on tungsten surface by use of transient heat load,” Plasma Fusion Res.2, 009 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited