OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 14 — Jul. 15, 2013
  • pp: 17404–17412

Circular hybrid plasmonic waveguide with ultra-long propagation distance

Chang Yeong Jeong, Myunghwan Kim, and Sangin Kim  »View Author Affiliations

Optics Express, Vol. 21, Issue 14, pp. 17404-17412 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1506 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a novel plasmonic waveguide structure, which is referred to as a circular hybrid plasmonic waveguide (HPW) and consists of a metal wire covered with low- and high-index dielectric layers. The circular HPW exhibits two distinctly different modes, namely, the strongly localized mode and the extremely low-loss mode. Our numerical calculation demonstrates that the strongly localized mode exhibits 10−4 order scale in normalized mode area and can be performed even in tens of nanometer sizes of waveguide geometry. In the extremely low-loss mode, the HPW exhibits ultra-long propagation distance of more than 103μm that can be achieved by forming the dipole-like hybrid mode and properly adjusting the radius of the metal wire. It is also shown that, even with this long-range propagation, the mode area of the dipole-like hybrid mode can be maintained at subwavelength scale. The simultaneous achievement of a small mode area and ultra-long propagation distance contributes to the ultra-high propagation distance to mode size ratio of the waveguide. The HPW results are very helpful for plasmonic device applications in the fields of low-threshold nanolasers, ultrafast modulators, and optical switches.

© 2013 OSA

OCIS Codes
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons
(050.6624) Diffraction and gratings : Subwavelength structures
(070.7345) Fourier optics and signal processing : Wave propagation

ToC Category:
Optics at Surfaces

Original Manuscript: May 28, 2013
Revised Manuscript: July 8, 2013
Manuscript Accepted: July 8, 2013
Published: July 12, 2013

Chang Yeong Jeong, Myunghwan Kim, and Sangin Kim, "Circular hybrid plasmonic waveguide with ultra-long propagation distance," Opt. Express 21, 17404-17412 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature482(7384), 204–207 (2012). [CrossRef] [PubMed]
  2. M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system,” Nat. Phys.6(4), 279–283 (2010). [CrossRef]
  3. K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics3(1), 55–58 (2009). [CrossRef]
  4. A. Y. Elezzabi, Z. Han, S. Sederberg, and V. Van, “Ultrafast all-optical modulation in silicon-based nanoplasmonic devices,” Opt. Express17(13), 11045–11056 (2009). [CrossRef] [PubMed]
  5. M. I. Stockman, “The spaser as a nanoscale quantum generator and ultrafast amplifier,” J. Opt.12(2), 024004 (2010). [CrossRef]
  6. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407 (2006). [CrossRef]
  7. L. Y. M. Tobing, L. Tjahjana, and D. H. Zhang, “Demonstration of low-loss on-chip integrated plasmonic waveguide based on simple fabrication steps on silicon-on-insulator platform,” Appl. Phys. Lett.101(4), 041117 (2012). [CrossRef]
  8. J. H. Kang, Y. S. No, S. H. Kwon, and H. G. Park, “Ultrasmall subwavelength nanorod plasmonic cavity,” Opt. Lett.36(11), 2011–2013 (2011). [CrossRef] [PubMed]
  9. J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett.9(2), 897–902 (2009). [CrossRef] [PubMed]
  10. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).
  11. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  12. V. J. Sorger and X. Zhang, “Physics. Spotlight on plasmon lasers,” Science333(6043), 709–710 (2011). [CrossRef] [PubMed]
  13. M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. D. Vries, P. J. V. Veldhoven, F. W. M. V. Otten, T. J. Eijkemans, J. P. Turkiewicz, H. D. Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007). [CrossRef]
  14. K. Yu, A. Lakhani, and M. C. Wu, “Subwavelength metal-optic semiconductor nanopatch lasers,” Opt. Express18(9), 8790–8799 (2010). [CrossRef] [PubMed]
  15. S. H. Kwon, J. H. Kang, C. Seassal, S. K. Kim, P. Regreny, Y. H. Lee, C. M. Lieber, and H. G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett.10(9), 3679–3683 (2010). [CrossRef] [PubMed]
  16. V. J. Sorger, N. D. L. Kimura, R. M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics1(1), 17–22 (2012). [CrossRef]
  17. L. A. Sweatlock and K. Diest, “Vanadium dioxide based plasmonic modulators,” Opt. Express20(8), 8700–8709 (2012). [CrossRef] [PubMed]
  18. W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett.9(12), 4403–4411 (2009). [CrossRef] [PubMed]
  19. J. Wang, X. Guan, Y. He, Y. Shi, Z. Wang, S. He, P. Holmström, L. Wosinski, L. Thylen, and D. Dai, “Sub-μm2 power splitters by using silicon hybrid plasmonic waveguides,” Opt. Express19(2), 838–847 (2011). [CrossRef] [PubMed]
  20. F. Lou, D. Dai, and L. Wosinski, “Ultracompact polarization beam splitter based on a dielectric-hybrid plasmonic-dielectric coupler,” Opt. Lett.37(16), 3372–3374 (2012). [CrossRef] [PubMed]
  21. J. A. Dionne, H. J. Lezec, and H. A. Atwater, “Highly confined photon transport in subwavelength metallic slot waveguides,” Nano Lett.6(9), 1928–1932 (2006). [CrossRef] [PubMed]
  22. L. Gao, L. Tang, F. Hu, R. Guo, X. Wang, and Z. Zhou, “Active metal strip hybrid plasmonic waveguide with low critical material gain,” Opt. Express20(10), 11487–11495 (2012). [CrossRef] [PubMed]
  23. D. Dai, Y. Shi, S. He, L. Wosinski, and L. Thylen, “Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or high-index gain medium,” Opt. Express19(14), 12925–12936 (2011). [CrossRef] [PubMed]
  24. I. Avrutsky, R. Soref, and W. Buchwald, “Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap,” Opt. Express18(1), 348–363 (2010). [CrossRef] [PubMed]
  25. T. Laroche and C. Girard, “Near-field optical properties of single plasmonic nanowires,” Appl. Phys. Lett.89(23), 233119 (2006). [CrossRef]
  26. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008). [CrossRef]
  27. R. Hao, E. Li, and X. Wei, “Two-dimensional light confinement in cross-index-modulation plasmonic waveguides,” Opt. Lett.37(14), 2934–2936 (2012). [CrossRef] [PubMed]
  28. S. Lee and S. Kim, “Plasmonic mode-gap waveguides using hetero-metal films,” Opt. Express18(3), 2197–2208 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited