OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 15 — Jul. 29, 2013
  • pp: 17472–17483

Physical insights into inverse-scattering profiles and symmetric dispersionless FBG designs

Michalis N. Zervas and Michael K. Durkin  »View Author Affiliations

Optics Express, Vol. 21, Issue 15, pp. 17472-17483 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2164 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We revisit representative and widely used inverse-scattering fiber Bragg grating designs and shed physical insight into their characteristics. We first demonstrate numerically and experimentally that dispersionless square filters are actually dispersion compensated devices and we physically identify the spatially separated main (dispersive) reflector and dispersion compensator sections. We also look into the features of pure 2nd-order dispersion and 3rd-order dispersion compensator designs and discuss their physical importance. Finally, we use the gained physical insight to design strong symmetric gratings with dispersionless response from both sides. Using this knowledge we design and fabricate strong (>30dB) bidirectional dispersionless filters.

© 2013 OSA

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(230.1480) Optical devices : Bragg reflectors
(260.2030) Physical optics : Dispersion
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: May 10, 2013
Revised Manuscript: July 4, 2013
Manuscript Accepted: July 5, 2013
Published: July 15, 2013

Michalis N. Zervas and Michael K. Durkin, "Physical insights into inverse-scattering profiles and symmetric dispersionless FBG designs," Opt. Express 21, 17472-17483 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical waveguides: application to reflection filter fabrication,” Appl. Phys. Lett.32(10), 647–649 (1978). [CrossRef]
  2. C. R. Giles, “Lightwave applications of fiber Bragg gratings,” J. Lightwave Technol.15(8), 1391–1404 (1997). [CrossRef]
  3. A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing, Artech House Inc. (1999).
  4. R. I. Laming, N. Robinson, P. L. Scrivener, M. N. Zervas, S. Barcelos, L. Reekie, and J. A. Tucknott, “A dispersion tunable grating in a 10-Gb/s 100-220 km step-index fiber link,” IEEE Photon. Technol. Lett.8(3), 428–430 (1996). [CrossRef]
  5. Y. Painchaud, M. Lapointe, F. Trépanier, R. L. Lachance, C. Paquet, and M. Guy, “Recent Progress on FBG-Based Tunable Dispersion Compensators for 40 Gb/s Applications,” Proc. Optical Fiber Commun./National Fiber Optic Engineers Conf. (OFC/NFOEC ‘07) (Anaheim, CA, 2007), paper OThP3. [CrossRef]
  6. T. Schmidt, C. Malouin, R. Saunders, J. Hong, and R. Marcoccia, “Mitigating channel impairments in high capacity serial 40G and 100G DWDM transmission systems,” IEEE/LEOS Summer Topical Meetings, ME2.2, 141–142 (2008).
  7. G. Raybon, P. J. Winzer, H. Song, A. Adamiecki, S. Corteselli, A. H. Gnauck, T. Kissell, D. A. Fishman, N. M. Denkin, Y.-H. Kao, T. L. Downs, A. Carenza, S. Scrudato, E. H. Goode, W. A. Thompson, C. R. Doerr, L. L. Buhl, T. Xia, G. Wellbrock, W. Lee, G. Lyons, P. Hofmann, T. T. Fisk, E. B. Basch, W. J. Kluge, J. R. Gatewood, T. Kawanishi, K. Higuma, and Y. Painchaud, “100 Gb/s DQPSK Field Trial: Live Video Transmission Over an Operating LambdaXtreme® Network,” Bell Lab. Tech. J.14(4), 85–113 (2010). [CrossRef]
  8. A. Galvanauskas, M. E. Fermann, D. Harter, K. Sugden, and I. Bennion, “All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings,” Appl. Phys. Lett.66(9), 1053–1055 (1995). [CrossRef]
  9. R. Gumenyuk, I. Vartiainen, H. Tuovinen, and O. G. Okhotnikov, “Dissipative dispersion-managed soliton 2 μm thulium/holmium fiber laser,” Opt. Lett.36(5), 609–611 (2011). [CrossRef] [PubMed]
  10. D. C. Adler, W. Wieser, F. Trepanier, J. M. Schmitt, and R. A. Huber, “Coherence length extension of Fourier domain mode locked lasers,” Proc. SPIE8213, 82130O, 82130O-4 (2012). [CrossRef]
  11. M. Ibsen, R. Feced, P. C. Teh, J. H. Lee, M. R. Mokhtar, P. Petropoulos, M. N. Zervas, D. J. Richardson, and D. N. Payne, “Advanced Bragg grating devices and where they are going,” Proc. 27th Australian Conference on Optical Fibre Technology (ACOFT), 89–91 Sydney (2002).
  12. M. Ibsen and R. Feced, “Fiber Bragg gratings for pure dispersion-slope compensation,” Opt. Lett.28(12), 980–982 (2003). [CrossRef] [PubMed]
  13. H. A. Haus, J. D. Moores, and L. E. Nelson, “Effect of third-order dispersion on passive mode locking,” Opt. Lett.18(1), 51–53 (1993). [CrossRef] [PubMed]
  14. M. L. Dennis and I. N. Duling, “Third-order dispersion in femtosecond fiber lasers,” Opt. Lett.19(21), 1750–1752 (1994). [CrossRef] [PubMed]
  15. G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett.14(15), 823–825 (1989). [CrossRef] [PubMed]
  16. S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, “Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett.28(12), 995–997 (2003). [CrossRef] [PubMed]
  17. H. Kogelnik, “Filter response of nonuniform almost-periodic structures,” Bell Syst. Tech. J.55, 109–126 (1976).
  18. P. St. J. Russell, T. A. Birks, and F. D. Lloyd-Lucas, “Photonic Bloch waves and photonic band gaps,” in Confined Electrons and Photons, E. Burnstein, C. Weisbuch (Eds), 585–633, Plenum (1995).
  19. H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys.43(5), 2327–2335 (1972). [CrossRef]
  20. M. Yamada and K. Sakuda, “Analysis of almost-periodic distributed feedback slab waveguides via a fundamental matrix approach,” Appl. Opt.26(16), 3474–3478 (1987). [CrossRef] [PubMed]
  21. P. S. Cross and H. Kogelnik, “Sidelobe suppression in corrugated-waveguide filters,” Opt. Lett.1(1), 43–45 (1977). [CrossRef] [PubMed]
  22. K. Ennser, M. N. Zervas, and R. I. Laming, “Optimization of apodized linearly chirped fiber gratings for optical communications,” IEEE J. Quantum Electron.34(5), 770–778 (1998). [CrossRef]
  23. K. A. Winick and J. E. Roman, “Design of corrugated waveguide filters by Fourier-transform techniques,” IEEE J. Quantum Electron.26(11), 1918–1929 (1990). [CrossRef]
  24. G. L. Lamb, Jr., “Elements of soliton theory,” New York: Wiley (1980).
  25. A. M. Bruckstein, B. C. Levy, and T. Kailath, “Differential methods in inverse scattering,” SIAM J. Appl. Math.45(2), 312–335 (1985). [CrossRef]
  26. R. Feced, M. N. Zervas, and M. A. Muriel, “An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings,” IEEE J. Quantum Electron.35(8), 1105–1115 (1999). [CrossRef]
  27. J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” J. Quantum Electron.37(2), 165–173 (2001). [CrossRef]
  28. A. Rosenthal and M. Horowitz, “New technique to accurately interpolate the complex reflection spectrum of fiber Bragg gratings,” IEEE J. Quantum Electron.40(8), 1099–1104 (2004). [CrossRef]
  29. L. Huang, W. Huang, J. Wang, and G. Yang, “Improved layer peeling algorithm for strongly reflecting fiber gratings,” Chin. Opt. Lett.4, 505–507 (2006).
  30. M. Ibsen, R. Feced, P. Petropoulos, and M.N. Zervas, “99.9% reflectivity dispersion-less square-filter fibre Bragg gratings for high speed DWDM networks,” in Proceedings of Optical Fiber Communications Conference, paper PD21 (2002).
  31. K. H. Ylä-Jarkko, M. N. Zervas, M. K. Durkin, I. Barry, and A. B. Grudinin, “Power Penalties Due to In-Band and Out-of-Band Dispersion in FBG Cascades,” J. Lightwave Technol.21(2), 506–510 (2003). [CrossRef]
  32. M. K. Durkin and M. N. Zervas, “Apparatus for filtering optical radiation at an operating wavelength,” Patent No: US6,947,641 (2005).
  33. P. Minzioni and M. Tormen, “Bragg gratings: Impact of apodization lobes and design of a dispersionless optical filter,” J. Lightwave Technol.24(1), 605–611 (2006). [CrossRef]
  34. M. N. Zervas and M. K. Durkin, “Physical insight into dispersionless FBG designs,” in Bragg Gratings, Photosensitivity, and Poling (BGPP) in Glass Waveguides, paper BM3D.6, Colorado (2012).
  35. M. J. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, and S. Barcelos, “Moving fibre/phase mask-scanning beam technique for enhanced flexibility in producing fibre gratings with a uniform phase mask,” Electron. Lett.31(17), 1488–1490 (1995). [CrossRef]
  36. W. H. Loh, M. J. Cole, M. N. Zervas, S. Barcelos, and R. I. Laming, “Complex grating structures with uniform phase masks based on the moving fiber-scanning beam technique,” Opt. Lett.20(20), 2051–2053 (1995). [CrossRef] [PubMed]
  37. C. Riziotis and M. N. Zervas, “Effect of in-band group delay ripple on WDM filter performance,” 27th European Conf. Opt. Commun.4, 492–493 (2001) (ECOC).
  38. M. Sumetsky, B. J. Eggleton, and C. de Sterke, “Theory of group delay ripple generated by chirped fiber gratings,” Opt. Express10(7), 332–340 (2002). [CrossRef] [PubMed]
  39. M. K. Durkin, R. Feced, C. Ramirez, and M. N. Zervas, “Advanced fibre Bragg gratings for high performance dispersion compensation in DWDM systems”, Optical Fiber Communications Conf.1, 121–123 (2000). [CrossRef]
  40. K. Ennser, M. Ibsen, M. Durkin, M. N. Zervas, and R. I. Laming, “Influence of non-ideal chirped fiber grating characteristics on dispersion cancellation,” IEEE Photon. Technol. Lett.10(10), 1476–1478 (1998). [CrossRef]
  41. F. Knappe, H. Renner, and E. Brinkmeyer, “Efficient design of spatially symmetric Bragg gratings for add/drop multiplexers,” AEU Int. J. Electron. Commun.62(7), 513–520 (2008) (AEÜ). [CrossRef]
  42. A. V. Nemykin and D. A. Shapiro, “Optical FBG filter with minimum group delay for WDM systems,” Opt. Commun.289, 97–102 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited