OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 15 — Jul. 29, 2013
  • pp: 17484–17491

Composite structure of SiO2@AgNPs@p-SiNWs for enhanced broadband optical antireflection

Ren Lu, Yewu Wang, Lin Gu, Wei Wang, Yanjun Fang, and Jian Sha  »View Author Affiliations


Optics Express, Vol. 21, Issue 15, pp. 17484-17491 (2013)
http://dx.doi.org/10.1364/OE.21.017484


View Full Text Article

Enhanced HTML    Acrobat PDF (1779 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The composite structure of SiO2@AgNPs@p-SiNWs based on silicon nanowires (SiNWs) produced by metal-assisted chemical etching (MaCE) method has been designed to realize the significant reflection suppression over a broad wavelength range (300 - 2500 nm). Especially, the reflectivity of the structure even below 0.3% at a wide range of 620 - 1950 nm can be achieved. It also has been demonstrated that SiO2 capers play a dominant role in the significant reflection suppression of the composite structure.

© 2013 OSA

OCIS Codes
(160.6000) Materials : Semiconductor materials
(290.5850) Scattering : Scattering, particles
(310.1210) Thin films : Antireflection coatings
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Thin Films

History
Original Manuscript: May 14, 2013
Revised Manuscript: July 9, 2013
Manuscript Accepted: July 10, 2013
Published: July 15, 2013

Citation
Ren Lu, Yewu Wang, Lin Gu, Wei Wang, Yanjun Fang, and Jian Sha, "Composite structure of SiO2@AgNPs@p-SiNWs for enhanced broadband optical antireflection," Opt. Express 21, 17484-17491 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-15-17484


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. S. Kolesar, V. M. Bright, and D. M. Sowders, “Optical reflectance reduction of textured silicon surfaces coated with an antireflective thin film,” Thin Solid Films290–291, 23–29 (1996). [CrossRef]
  2. M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9(3), 239–244 (2010). [PubMed]
  3. H. Li, R. Jia, C. Chen, Z. Xing, W. Ding, Y. Meng, D. Wu, X. Liu, and T. Ye, “Influence of nanowires length on performance of crystalline silicon solar cell,” Appl. Phys. Lett.98(15), 151116 (2011). [CrossRef]
  4. J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater.23(10), 1272–1276 (2011). [CrossRef] [PubMed]
  5. K. Q. Peng, X. Wang, X. L. Wu, and S. T. Lee, “Platinum nanoparticle decorated silicon nanowires for efficient solar energy conversion,” Nano Lett.9(11), 3704–3709 (2009). [CrossRef] [PubMed]
  6. C. Lee, S. Y. Bae, S. Mobasser, and H. Manohara, “A novel silicon nanotips antireflection surface for the micro Sun sensor,” Nano Lett.5(12), 2438–2442 (2005). [CrossRef] [PubMed]
  7. J. Q. Xi, M. F. Schubert, J. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics1(3), 176–179 (2007).
  8. S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett.93(25), 251108 (2008). [CrossRef]
  9. M. L. Kuo, D. J. Poxson, Y. S. Kim, F. W. Mont, J. K. Kim, E. F. Schubert, and S. Y. Lin, “Realization of a near-perfect antireflection coating for silicon solar energy utilization,” Opt. Lett.33(21), 2527–2529 (2008). [CrossRef] [PubMed]
  10. L. Sainiemi, V. Jokinen, A. Shah, M. Shpak, S. Aura, P. Suvanto, and S. Franssila, “Non-reflecting silicon and polymer surfaces by plasma etching and replication,” Adv. Mater.23(1), 122–126 (2011). [CrossRef] [PubMed]
  11. L. Sainiemi, H. Keskinen, M. Aromaa, L. Luosujarvi, K. Grigoras, T. Kotiaho, J. M. Makela, and S. Franssila, “Rapid fabrication of high aspect ratio silicon nanopillars for chemical analysis,” Nanotechnology18(50), 505303 (2007). [CrossRef]
  12. C. H. Hsu, H. C. Lo, C. F. Chen, C. T. Wu, J. S. Hwang, D. Das, J. Tsai, L. C. Chen, and K. H. Chen, “Generally applicable self-masked dry etching technique for nanotip array fabrication,” Nano Lett.4(3), 471–475 (2004). [CrossRef]
  13. Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol.2(12), 770–774 (2007). [CrossRef] [PubMed]
  14. C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett.78(13), 1850–1852 (2001). [CrossRef]
  15. Y. Kanamori, M. Sasaki, and K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates,” Opt. Lett.24(20), 1422–1424 (1999). [CrossRef] [PubMed]
  16. P. Lalanne and G. M. Morris, “Design, fabrication and characterization of subwavelength periodic structures for semiconductor anti-reflection coating in the visible domain,” Proc. SPIE2776, 300–309 (1996). [CrossRef]
  17. S. K. Srivastava, D. Kumar, P. K. Singh, M. Kar, V. Kumar, and M. Husain, “Excellent antireflection properties of vertical silicon nanowire arrays,” Sol. Energy Mater. Sol. Cells94(9), 1506–1511 (2010). [CrossRef]
  18. J. Oh, H. C. Yuan, and H. M. Branz, “An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures,” Nat. Nanotechnol.7(11), 743–748 (2012). [CrossRef] [PubMed]
  19. G. Jia, M. Steglich, I. Sill, and F. Falk, “Core–shell heterojunction solar cells on silicon nanowire arrays,” Sol. Energy Mater. Sol. Cells96, 226–230 (2012). [CrossRef]
  20. E. C. Garnett and P. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc.130(29), 9224–9225 (2008). [CrossRef] [PubMed]
  21. J. M. Weisse, C. H. Lee, D. R. Kim, and X. Zheng, “Fabrication of flexible and vertical silicon nanowire electronics,” Nano Lett.12(6), 3339–3343 (2012). [CrossRef] [PubMed]
  22. K. Rasool, M. A. Rafiq, C. B. Li, E. Krali, Z. A. K. Durrani, and M. M. Hasan, “Enhanced electrical and dielectric properties of polymer covered silicon nanowire arrays,” Appl. Phys. Lett.101(2), 023114 (2012). [CrossRef]
  23. J. Y. Jung, Z. Guo, S. W. Jee, H. D. Um, K. T. Park, and J. H. Lee, “A strong antireflective solar cell prepared by tapering silicon nanowires,” Opt. Express18(S3Suppl 3), A286–A292 (2010). [CrossRef] [PubMed]
  24. J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett.9(1), 279–282 (2009). [CrossRef] [PubMed]
  25. Z. Huang, N. Geyer, P. Werner, J. de Boor, and U. Gösele, “Metal-assisted chemical etching of silicon: a review,” Adv. Mater.23(2), 285–308 (2011). [CrossRef] [PubMed]
  26. M. L. Zhang, K. Q. Peng, X. Fan, J. S. Jie, R. Q. Zhang, S. T. Lee, and N. B. Wong, “Preparation of large-area uniform silicon nanowires arrays through metal-assisted chemical etching,” J. Phys. Chem. C112(12), 4444–4450 (2008). [CrossRef]
  27. K. C. Hsieh, T. Y. Tsai, D. Wan, H. L. Chen, and N. H. Tai, “Iridescence of patterned carbon nanotube forests on flexible substrates: from darkest materials to colorful films,” ACS Nano4(3), 1327–1336 (2010). [CrossRef] [PubMed]
  28. C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (John Wiley & Sons, New York, 1983).
  29. R. Lu, J. Sha, W. Xia, Y. Fang, L. Gu, and Y. Wang, “A 3D-SERS substrate with high stability: Silicon nanowire arrays decorated by silver nanoparticles,” CrystEngComm (2013), doi:. [CrossRef]
  30. P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett.93(11), 113108 (2008). [CrossRef]
  31. Y. A. Akimov, W. S. Koh, S. Y. Sian, and S. Ren, “Nanoparticle-enhanced thin film solar cells: Metallic or dielectric nanoparticles,” Appl. Phys. Lett.96(7), 073111 (2010). [CrossRef]
  32. V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater.22(43), 4794–4808 (2010). [CrossRef] [PubMed]
  33. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010). [CrossRef] [PubMed]
  34. F. Toor, H. M. Branz, M. R. Page, K. M. Jones, and H. C. Yuan, “Multi-scale surface texture to improve blue response of nanoporous black silicon solar cells,” Appl. Phys. Lett.99(10), 103501 (2011). [CrossRef]
  35. H. Lv, H. Shen, Y. Jiang, C. Gao, H. Zhao, and J. Yuan, “Porous-pyramids structured silicon surface with low reflectance over a broad band by electrochemical etching,” Appl. Surf. Sci.258(14), 5451–5454 (2012). [CrossRef]
  36. E. D. Palik, ed., Handbook of optical constants of solids (Academic, Orlando, Fla., 1985).
  37. J. Wang, W. B. White, and J. H. Adair, “Optical properties of core–shell structured Ag/SiO2 nanocomposites,” Mater. Sci. Eng. B166(3), 235–238 (2010). [CrossRef]
  38. K. Kim, H. S. Kim, and H. K. Park, “Facile method to prepare surface-enhanced-Raman-scattering-active Ag nanostructures on silica spheres,” Langmuir22(19), 8083–8088 (2006). [CrossRef] [PubMed]
  39. Z. J. Jiang and C. Y. Liu, “Seed-mediated growth technique for the preparation of a silver nanoshell on a silica sphere,” J. Phys. Chem. B107(45), 12411–12415 (2003). [CrossRef]
  40. K. S. Chou and C. C. Chen, “Fabrication and characterization of silver core and porous silica shell nanocomposite particles,” Microporous Mesoporous Mater.98(1-3), 208–213 (2007). [CrossRef]
  41. C. Lin and M. L. Povinelli, “The effect of plasmonic particles on solar absorption in vertically aligned silicon nanowire arrays,” Appl. Phys. Lett.97(7), 071110 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited