OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 15 — Jul. 29, 2013
  • pp: 17520–17530

Dual and anti-dual modes in dielectric spheres

Xavier Zambrana-Puyalto, Xavier Vidal, Mathieu L. Juan, and Gabriel Molina-Terriza  »View Author Affiliations


Optics Express, Vol. 21, Issue 15, pp. 17520-17530 (2013)
http://dx.doi.org/10.1364/OE.21.017520


View Full Text Article

Enhanced HTML    Acrobat PDF (1386 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present how the angular momentum of light can play an important role to induce a dual or anti-dual behaviour on a dielectric particle. Although the material the particle is made of is not dual, i.e. a dielectric does not interact with an electrical field in the same way as it does with a magnetic one, a spherical particle can behave as a dual system when the correct excitation beam is chosen. We study the conditions under which this dual or anti-dual behaviour can be induced.

© 2013 OSA

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(260.5430) Physical optics : Polarization
(260.5740) Physical optics : Resonance
(290.1350) Scattering : Backscattering
(290.4020) Scattering : Mie theory
(290.5850) Scattering : Scattering, particles
(260.2065) Physical optics : Effective medium theory
(290.2558) Scattering : Forward scattering
(080.4865) Geometric optics : Optical vortices
(290.5825) Scattering : Scattering theory

ToC Category:
Physical Optics

History
Original Manuscript: May 29, 2013
Revised Manuscript: July 5, 2013
Manuscript Accepted: July 5, 2013
Published: July 15, 2013

Citation
Xavier Zambrana-Puyalto, Xavier Vidal, Mathieu L. Juan, and Gabriel Molina-Terriza, "Dual and anti-dual modes in dielectric spheres," Opt. Express 21, 17520-17530 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-15-17520


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. A. M. Dirac, “Quantised singularities in the electromagnetic field,” Proceedings of the Royal Society of London. Series A133, 60–72 (1931). [CrossRef]
  2. K. Bendtz, D. Milstead, H.-P. Hächler, A.M. Hirt, P. Mermod, P. Michael, T. Sloan, C. Tegner, and S.B. Thorarinsson, “Search for Magnetic Monopoles in Polar Volcanic Rocks,” Phys. Rev. Lett.110, 121803 (2013). [CrossRef]
  3. J. D. Jackson, Classical Electrodynamics(John Wiley & Sons, New York, 1998).
  4. M. Calkin, “An invariance property of the free electromagnetic field,” Am. J. Phys.33, 958–960 (1965). [CrossRef]
  5. I. Fernandez-Corbaton, X. Zambrana-Puyalto, N. Tischler, A. Minovich, X. Vidal, M. L. Juan, and G. Molina-Terriza, “Experimental demonstration of electromagnetic duality symmetry breaking,” arXiv:1206.0868 (2012).
  6. X. Zambrana-Puyalto, X. Vidal, and G. Molina-Terriza, “Excitation of single multipolar modes with engineered cylindrically symmetric fields,” Opt. Express20, 24536–24544 (2012). [CrossRef] [PubMed]
  7. Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today12, 60–69 (2009). [CrossRef]
  8. M. Nieto-Vesperinas, R. Gomez-Medina, and J. J. Sáenz, “Angle-suppressed scattering and optical forces on submicrometer dielectric particles,” J. Opt. Soc. Am. A28, 54–60 (2011). [CrossRef]
  9. W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric coreshell nanoparticles,” ACS Nano6, 5489–5497 (2012). [CrossRef] [PubMed]
  10. A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express19, 4815–4826 (2011). [CrossRef] [PubMed]
  11. A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of si-nanoparticle arrays,” Phys. Rev. B82, 045404 (2010). [CrossRef]
  12. J. Geffrin, B. García-Camara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun.3, 1171 (2012). [CrossRef] [PubMed]
  13. S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Letters13, 1806–1809 (2013). [PubMed]
  14. Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk/’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun.4, 1527 (2013). [CrossRef] [PubMed]
  15. X. Zambrana-Puyalto, I. Fernandez-Corbaton, M. L. Juan, X. Vidal, and G. Molina-Terriza, “Duality symmetry and Kerker conditions,” Opt. Lett.38, 1857–1859 (2013). [CrossRef] [PubMed]
  16. A. Alu and N. Engheta, “How does zero forward-scattering in magnetodielectric nanoparticles comply with the optical theorem?”J. Nanophoton.4, 041590 (2010). [CrossRef]
  17. B. García-Cámara, R. A. de la Osa, J. M. Saiz, F. González, and F. Moreno, “Directionality in scattering by nanoparticles: Kerker’s null-scattering conditions revisited,” Opt. Lett.36, 728–730 (2011). [CrossRef]
  18. W.-K. Tung, Group Theory in Physics(World Scientific, Singapore, 1985).
  19. V. B. Berestetskii, L. P. Pitaevskii, and E. M. Lifshitz, Quantum Electrodynamics, Second Edition: Volume 4(Butterworth-Heinemann, 1982).
  20. I. Fernandez-Corbaton, X. Zambrana-Puyalto, and G. Molina-Terriza, “Helicity and angular momentum: A symmetry-based framework for the study of light-matter interactions,” Phys. Rev. A86, 042103 (2012). [CrossRef]
  21. A. Messiah, Quantum Mechanics(Dover, New York, 1999).
  22. G. Gouesbet and G. Gréhan, Generalized Lorenz-Mie Theories(Springer, Berlin, 2011). [CrossRef]
  23. M. E. Rose, Multipole Fields(Wiley, New York, 1955).
  24. X. Zambrana-Puyalto and G. Molina-Terriza, “The role of the angular momentum of light in mie scattering. excitation of dielectric spheres with laguerre-gaussian modes,” J. Quant. Spectrosc. Radiat. Transfer (2012).
  25. G. Molina-Terriza, “Determination of the total angular momentum of a paraxial beam,” Phys. Rev. A78, 053819 (2008). [CrossRef]
  26. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles(Wiley, New York, 1983).
  27. M. Kerker, D.-S. Wang, and C. L. Giles, “Electromagnetic scattering by magnetic spheres,” J. Opt. Soc. Am.73, 765–767 (1983). [CrossRef]
  28. H. van de Hulst, Light Scattering by Small Prticles(Wiley, New York, 1957).
  29. R. Gómez-Medina, B García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophoton.5, 053512 (2011) [CrossRef]
  30. B. Richards and E. Wolf, “Electromagnetism Diffraction in Optical Systems. II. Structure of the Image Field in an Aplanatic System,” Proc. R. Soc. A253, 358–379 (1959) [CrossRef]
  31. L. Novotny and B. Hecht, Principles of nano-optics(Cambridge University Press, Cambdrige, MA, 2006). [CrossRef]
  32. N. M. Mojarad, V. Sandoghdar, and M. Agio, “Plasmon spectra of nanospheres under a tightly focused beam,” J. Opt. Soc. Am. B25, 651–658 (2008). [CrossRef]
  33. N. M. Mojarad and M. Agio, “Tailoring the excitation of localized surface plasmon-polariton resonances byfocusing radially-polarized beams,” Opt. Express17, 117–122 (2009). [CrossRef] [PubMed]
  34. F. Pampaloni and J. Enderlein, “Gaussian, Hermite-Gaussian, and Laguerre-Gaussian beams: A primer,” arXiv:physics/0410021 (2004).
  35. E. Palik, Handbook of Optical Constants of Solids(Academic Press, 1985).
  36. M. Bass, Handbook of Optics, 2nd ed. (McGraw-Hill, 1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited