OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 15 — Jul. 29, 2013
  • pp: 17531–17538

TE-mode coplanar imaging using weakly anisotropic metasurface

Xiang Wan, Xiao Peng Shen, and Tie Jun Cui  »View Author Affiliations


Optics Express, Vol. 21, Issue 15, pp. 17531-17538 (2013)
http://dx.doi.org/10.1364/OE.21.017531


View Full Text Article

Enhanced HTML    Acrobat PDF (1156 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We analyze and experimentally realize coplanar imaging of transverse-electric (TE) modes surface waves using weakly anisotropic metasurface consisting of non-periodic subwavelength U-shaped metallic structures. Such metallic structures with the exciting coplanar dipole are integrated on the top surface of a thin dielectric board. A circuit model is utilized to analyze the characteristics of the surface waves supported by the metasurface. By varying the geometrical parameters of the U-shaped metallic structures, the phases of surface waves are modulated, from which a planar lens is presented for the TE-mode coplanar imaging. The analyses and measurements show that anisotropies of the U-shaped metallic structures have little influence on the imaging properties of the planar lens. The measurement results have good agreements to numerical simulations.

© 2013 OSA

OCIS Codes
(240.0310) Optics at surfaces : Thin films
(240.6680) Optics at surfaces : Surface plasmons
(310.2785) Thin films : Guided wave applications
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Metamaterials

History
Original Manuscript: May 29, 2013
Revised Manuscript: June 29, 2013
Manuscript Accepted: July 4, 2013
Published: July 15, 2013

Citation
Xiang Wan, Xiao Peng Shen, and Tie Jun Cui, "TE-mode coplanar imaging using weakly anisotropic metasurface," Opt. Express 21, 17531-17538 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-15-17531


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. L. Holloway, D. C. Love, E. F. Kuester, J. A. Gordon, and D. A. Hill, “Use of Generalized Sheet Transition Conditions to Model Guided Waves on Metasurfaces/Metafilms,” IEEE Trans. Antenn. Propag.60(11), 5173–5186 (2012). [CrossRef]
  2. P. Y. Chen and A. Alu, “Mantle cloaking using thin patterned metasurfaces,” Phys. Rev. B84(20), 205110 (2011). [CrossRef]
  3. S. Maci, G. Minatti, M. Casaletti, and M. Bosiljevac, “Metasurfing: Addressing Waves on Impenetrable Metasurfaces,” IEEE Antennas Wirel. Propag. Lett.10, 1499–1502 (2011). [CrossRef]
  4. M. Bosiljevac, M. Casaletti, F. Caminita, Z. Sipus, and S. Maci, “Non-Uniform Metasurface Luneburg Lens Antenna Design,” IEEE Trans. Antenn. Propag.60(9), 4065–4073 (2012). [CrossRef]
  5. S. L. Sun, Q. He, S. Y. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater.11(5), 426–431 (2012). [CrossRef] [PubMed]
  6. N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science334(6054), 333–337 (2011). [CrossRef] [PubMed]
  7. Y. Zhao and A. Alu, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B84(20), 205428 (2011). [CrossRef]
  8. R. A. Hurd, “The propagation of an electromagnetic wave along an infinite corrugated surface,” Can. J. Phys.32(12), 727–734 (1954). [CrossRef]
  9. R. S. Elliott, “On the theory of corrugated plane surfaces,” Trans. IRE professional group on Antennas and Propagation. (71–81) 1954.
  10. W. Rotman, “A study of single-surface corrugated guides,” Proceedings of the IRE (951–959)1951.
  11. H. E. M. Barlow and A. E. Karbowiak, “An experimental investigation of the properties of corrugated cylindrical surface waveguides,” Proceedings of the IEEE-part III: Radio and Communication Engineering101, 182–188 (1954).
  12. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305(5685), 847–848 (2004). [CrossRef] [PubMed]
  13. F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt.7(2), S97–S101 (2005). [CrossRef]
  14. T. A. Morgado, J. S. Marcos, M. G. Silveirinha, and S. I. Maslovski, “Ultraconfined interlaced plasmons,” Phys. Rev. Lett.107(6), 063903 (2011). [CrossRef] [PubMed]
  15. B. Reinhard, O. Paul, R. Beigang, and M. Rahm, “Experimental and numerical studies of terahertz surface waves on a thin metamaterial film,” Opt. Lett.35(9), 1320–1322 (2010). [CrossRef] [PubMed]
  16. M. Navarro-Cía, M. Beruete, S. Agrafiotis, F. Falcone, M. Sorolla, and S. A. Maier, “Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms,” Opt. Express17(20), 18184–18195 (2009). [CrossRef] [PubMed]
  17. X. P. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A.110(1), 40–45 (2013). [CrossRef] [PubMed]
  18. Q. Wu, J. P. Turpin, and D. H. Werner, “Integrated photonic systems based on transformation optics enabled gradient index devices,” Light Sci. Appl.1(11), e38 (2012). [CrossRef]
  19. M. F. Volk, B. Reinhard, J. Neu, R. Beigang, and M. Rahm, “In-plane focusing of terahertz surface waves on a gradient index metamaterial film,” Opt. Lett.38(12), 2156–2158 (2013). [CrossRef]
  20. E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, “Magnetoinductive waves in one, two, and three dimensions,” J. Appl. Phys.92(10), 6252–6261 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited