OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 15 — Jul. 29, 2013
  • pp: 17539–17546

Mimicking the nonlinear dynamics of optical fibers with waveguide arrays: towards a spatiotemporal supercontinuum generation

Truong X. Tran and Fabio Biancalana  »View Author Affiliations

Optics Express, Vol. 21, Issue 15, pp. 17539-17546 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1871 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We numerically demonstrate the formation of the spatiotemporal version of the so-called diffractive resonant radiation generated in waveguide arrays with Kerr nonlinearity when a long pulse is launched into the system. The phase matching condition for the diffractive resonant radiation that we have found earlier for CW beams also works well in the spatiotemporal case. By introducing a linear potential, one can introduce a continuous shift of the central wavenumber of a linear pulse, whereas in the nonlinear case one can demonstrate that the soliton self-wavenumber shift can be compensated by the emission of diffractive resonant radiation, in a very similar fashion as it is done in optical fibers. This work paves the way for designing unique optical devices that generate spectrally broad supercontinua with a controllable directionality by taking advantage of the combined physics of optical fibers and waveguide arrays.

© 2013 OSA

OCIS Codes
(190.3270) Nonlinear optics : Kerr effect
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(230.7370) Optical devices : Waveguides

ToC Category:
Nonlinear Optics

Original Manuscript: May 31, 2013
Manuscript Accepted: July 3, 2013
Published: July 15, 2013

Truong X. Tran and Fabio Biancalana, "Mimicking the nonlinear dynamics of optical fibers with waveguide arrays: towards a spatiotemporal supercontinuum generation," Opt. Express 21, 17539-17546 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behavior in linear and nonlinear optical waveguide lattices,” Nature424, 817–823 (2003). [CrossRef] [PubMed]
  2. A. L. Jones, “Coupling of optical fibers and scattering in fibers,” J. Opt. Soc. Am.55, 261–269 (1965). [CrossRef]
  3. D. N. Christodoulides and R. I. Joseph, “Discrete self- focusing in nonlinear arrays of coupled waveguides,” Opt. Lett.13, 794–796 (1988). [CrossRef] [PubMed]
  4. Y. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals(Academic Press, 2003).
  5. U. Peschel, T. Pertsch, and F. Lederer, “Optical Bloch oscillations in waveguide arrays,” Opt. Lett.23, 1701–1703 (1998). [CrossRef]
  6. T. Pertsch, P. Dannberg, W. Elflein, A. Brauer, and F. Lederer, “Optical Bloch oscillations in temperature tuned waveguide arrays,” Phys. Rev. Lett.83, 4752–4755 (1999). [CrossRef]
  7. G. Lenz, I. Talanina, and C. M. de Sterke, “Bloch Oscillations in an array of curved optical waveguides,” Phys. Rev. Lett.83, 963–966 (1999). [CrossRef]
  8. F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, “Discrete solitons in optics,” Phys. Rep.463, 1–126 (2008). [CrossRef]
  9. D. N. Christodoulides and E. D. Eugenieva, “Blocking and routing discrete solitons in two-dimensional networks of nonlinear waveguide arrays,” Phys. Rev. Lett.87, 233901–233904 (2001). [CrossRef] [PubMed]
  10. S. Longhi, “Photonic analog of Zitterbewegung in binary waveguide arrays,” Opt. Lett.35, 235–237 (2010) [CrossRef] [PubMed]
  11. F. Dreisow, R. Keil, A. Tünnermann, S. Nolte, S. Longhi, and A. Szameit, “Klein tunneling of light in waveguide superlattices,” Europhys. Lett.97, 10008 (2012). [CrossRef]
  12. S. Longhi, “Classical simulation of relativistic quantum mechanics in periodic optical structures,” Appl. Phys. B104, 453–468 (2011). [CrossRef]
  13. J. M. Zeuner, N.K. Efremidis, R. Keil, F. Dreisow, D. N. Christodoulides, A. Tünnermann, S. Nolte, and A. Szameit, “Optical analogues for massless dirac particles and conical diffraction in one dimension,” Phys. Rev. Lett.109, 023602–023606 (2012). [CrossRef] [PubMed]
  14. Tr. X. Tran, S. Longhi, and F. Biancalana, “Optical analogue of relativistic Dirac solitons in binary waveguide arrays,” submitted.
  15. H. H. Kuehl and C. Y. Zhang, “Effects of higher-order dispersion on envelope solitons,” Phys. Fluids B2, 889–900 (1990). [CrossRef]
  16. P. K. A. Wai, H. H. Chen, and Y. C. Lee, “Radiations by solitons at the zero group-dispersion wavelength of single-mode optical fibers,” Phys. Rev. A41, 426–439 (1990). [CrossRef] [PubMed]
  17. V. I. Karpman, “Radiation by solitons due to higher-order dispersion,” Phys. Rev. E47, 2073–2082 (1993). [CrossRef]
  18. N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A51, 2602–2607 (1995). [CrossRef] [PubMed]
  19. F. Biancalana, D. V. Skryabin, and A. V. Yulin, “Theory of the soliton self-frequency shift compensation by the resonant radiationin photonic crystal fibers,” Phys. Rev. E70, 016615–016623 (2004). [CrossRef]
  20. A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett.87, 203901–203904 (2001). [CrossRef] [PubMed]
  21. V. N. Serkin, T. L. Belyaeva, G. H. Corro, and M. A. Granados, “Stimulated Raman self-scattering of femtosecond pulses. I. Soliton and non-soliton regimes of coherent self-scattering,” Quantum Electron.33, 325 (2003). [CrossRef]
  22. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78, 1135–1184 (2006). [CrossRef]
  23. G. P. Agrawal, Applications of Nonlinear Fiber Optics, 2nd ed. (Academic Press, 2008).
  24. P. St and J. Russell, “Photonic Crystal Fibers,” Science299, 358–362 (2003). [CrossRef]
  25. The Supercontinuum Laser Source, edited by R. Alfano, (Springer Verlag, 2006). [CrossRef]
  26. R. Holzwarth, M. Zimmermann, Th. Udem, T. W. Hánsch, P. Russbüldt, K. Gäbel, R. Poprawe, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “White-light frequency comb generation with a diode-pumped Cr:LiSAF laser,” Opt. Lett.26, 1376–1378 (2001). [CrossRef]
  27. G. P. Agrawal, Nonlinear fiber optics, 5th ed. (Academic Press, 2012).
  28. Tr. X. Tran and F. Biancalana, “Diffractive resonant radiation emitted by spatial solitons in waveguide arrays,” Phys. Rev. Lett.110, 113903–113903 (2013). [CrossRef]
  29. T. Pertsch, T. Zentgraf, U. Peschel, A. Bräuer, and F. Lederer, “Anomalous refraction and diffraction in discrete optical systems,” Phys. Rev. Lett.88, 093901–093904 (2002).
  30. F. M. Mitschke and L. F. Mollenauer, “Discovery of soliton self-frequency shift,” Opt. Lett.11, 659–661 (1986). [CrossRef] [PubMed]
  31. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett.11, 662–664 (1986). [CrossRef] [PubMed]
  32. D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science301, 17051708 (2003). [CrossRef]
  33. J. Santhanam and G. P. Agrawal, “Raman-induced spectral shifts in optical fibers: general theory based on the moment method,” Opt. Commun.222, 413–420 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited