OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 15 — Jul. 29, 2013
  • pp: 17547–17557

Full-wave approach for x-ray phase imaging

Yongjin Sung, Colin J. R. Sheppard, George Barbastathis, Masami Ando, and Rajiv Gupta  »View Author Affiliations


Optics Express, Vol. 21, Issue 15, pp. 17547-17557 (2013)
http://dx.doi.org/10.1364/OE.21.017547


View Full Text Article

Enhanced HTML    Acrobat PDF (2401 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a rigorous forward model for phase imaging of a 3-D object illuminated by a cone-shaped x-ray beam. Our model is based on a full-wave approach valid under the first Rytov approximation, and thus can be used with large and thick objects, e.g., luggage and human patients. We unify light-matter interaction and free-space propagation into an integrated wave optics framework. Therefore, our model can accurately calculate x-ray phase images formed with sources of arbitrary shape, and it can be effectively incorporated into x-ray phase tomography as a forward model. Within the best of our knowledge, this is the first non-paraxial, full-wave model for X-ray phase imaging.

© 2013 OSA

OCIS Codes
(340.7440) X-ray optics : X-ray imaging
(290.5825) Scattering : Scattering theory

ToC Category:
X-ray Optics

History
Original Manuscript: June 3, 2013
Revised Manuscript: June 29, 2013
Manuscript Accepted: June 30, 2013
Published: July 15, 2013

Virtual Issues
Vol. 8, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Yongjin Sung, Colin J. R. Sheppard, George Barbastathis, Masami Ando, and Rajiv Gupta, "Full-wave approach for x-ray phase imaging," Opt. Express 21, 17547-17557 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-15-17547


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Stanton, “Wilhelm Conrad Röntgen on a new kind of rays: translation of a paper read before the Würzburg Physical and Medical Society, 1895,” Nature53, 274–276 (1896).
  2. E. D. Pisano, M. J. Yaffe, and C. M. Kuzmiak, Digital Mammography (Lippincott Williams & Wilkins, 2004).
  3. B. Henke, E. Gullikson, and J. C. Davis, “X-Ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50-30,000 eV, Z = 1-92,” At. Data Nucl. Data Tables54(2), 181–342 (1993). [CrossRef]
  4. A. Momose, T. Takeda, and Y. Itai, “Blood Vessels: Depiction at Phase-Contrast X-ray Imaging without Contrast Agents in the Mouse and Rat-Feasibility Study 1,” Radiology217(2), 593–596 (2000). [PubMed]
  5. M. Ando, A. Maksimenko, H. Sugiyama, W. Pattanasiriwisawa, K. Hyodo, and C. Uyama, “Simple x-ray dark-and bright-field imaging using achromatic Laue optics,” Jpn. J. Appl. Phys.41(Part 2, No. 9A/B), L1016–L1018 (2002). [CrossRef]
  6. U. Bonse and F. Beckmann, “Multiple-beam X-ray interferometry for phase-contrast microtomography,” J. Synchrotron Radiat.8(1), 1–5 (2001). [CrossRef] [PubMed]
  7. T. Weitkamp, C. David, O. Bunk, J. Bruder, P. Cloetens, and F. Pfeiffer, “X-ray phase radiography and tomography of soft tissue using grating interferometry,” Eur. J. Radiol.68(3Suppl), S13–S17 (2008). [CrossRef] [PubMed]
  8. F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater.7(2), 134–137 (2008). [CrossRef] [PubMed]
  9. S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature384(6607), 335–338 (1996). [CrossRef]
  10. P. Spanne, C. Raven, I. Snigireva, and A. Snigirev, “In-line holography and phase-contrast microtomography with high energy x-rays,” Phys. Med. Biol.44(3), 741–749 (1999). [CrossRef] [PubMed]
  11. Y. S. Kashyap, P. S. Yadav, T. Roy, P. S. Sarkar, M. Shukla, and A. Sinha, “Laboratory-based X-ray phase-contrast imaging technique for material and medical science applications,” Appl. Radiat. Isot.66(8), 1083–1090 (2008). [CrossRef] [PubMed]
  12. Z. Zaprazny, D. Korytar, V. Ac, P. Konopka, and J. Bielecki, “Phase contrast imaging of lightweight objects using microfocus X-ray source and high resolution CCD camera,” JINST7(03), C03005 (2012). [CrossRef]
  13. D. M. Paganin, Coherent X-ray Optics (Oxford University Press, New York, 2006).
  14. M. Ando, K. Yamasaki, F. Toyofuku, H. Sugiyama, C. Ohbayashi, G. Li, L. Pan, X. Jiang, W. Pattanasiriwisawa, D. Shimao, E. Hashimoto, T. Kimura, M. Tsuneyoshi, E. Ueno, K. Tokumori, A. Maksimenko, Y. Higashida, and M. Hirano, “Attempt at visualizing breast cancer with x-ray dark field imaging,” Jpn. J. Appl. Phys.44(17), L528–L531 (2005). [CrossRef]
  15. R. M. Aspden and D. W. L. Hukins, “Collagen organization in articular cartilage, determined by X-ray diffraction, and its relationship to tissue function,” Proc. R. Soc. Lond. B Biol. Sci.212(1188), 299–304 (1981). [CrossRef] [PubMed]
  16. R. A. Lewis, “Medical phase contrast x-ray imaging: current status and future prospects,” Phys. Med. Biol.49(16), 3573–3583 (2004). [CrossRef] [PubMed]
  17. D. Shimao, H. Sugiyama, T. Kunisada, and M. Ando, “Articular cartilage depicted at optimized angular position of Laue angular analyzer by X-ray dark-field imaging,” Appl. Radiat. Isot.64(8), 868–874 (2006). [CrossRef] [PubMed]
  18. A. Pogany, D. Gao, and S. W. Wilkins, “Contrast and resolution in imaging with a microfocus x-ray source,” Rev. Sci. Instrum.68(7), 2774 (1997). [CrossRef]
  19. X. Wu and H. Liu, “A general theoretical formalism for X-ray phase contrast imaging,” J. XRay Sci. Technol.11(1), 33–42 (2003). [PubMed]
  20. A. Peterzol, J. Berthier, P. Duvauchelle, C. Ferrero, and D. Babot, “X-ray phase contrast image simulation,” Nucl. Instrum. Methods Phys. Res., Sect. B254, 307–318 (2007).
  21. L. A. Chernov and R. A. Silverman, Wave Propagation in a Random Medium (McGraw-Hill, 1960)
  22. V. I. Tatarski, Wave Propagation in a Turbulent Medium (McGraw-Hill, 1961).
  23. Y. Sung and G. Barbastathis, “Rytov approximation for x-ray phase imaging,” Opt. Express21(3), 2674–2682 (2013). [CrossRef] [PubMed]
  24. E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun.1(4), 153–156 (1969). [CrossRef]
  25. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (SIAM, 1988).
  26. Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express17(1), 266–277 (2009). [CrossRef] [PubMed]
  27. A. J. Devaney, “Inverse-scattering theory within the Rytov approximation,” Opt. Lett.6(8), 374–376 (1981). [CrossRef] [PubMed]
  28. M. Born, E. Wolf, and A. B. Bhatia, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge Univ Press, 1999).
  29. E. M. Stein and G. L. Weiss, Introduction to Fourier Analysis on Euclidean Spaces (Princeton University Press, Princeton, 1971).
  30. B. Henke, E. Gullikson, and J. C. X. Davis, “X-Ray Interactions: Photoabsorption, scattering, transmission, and reflection at E = 50-30,000 eV, Z = 1-92,” At. Data Nucl. Data Tables54(2), 181–342 (1993). [CrossRef]
  31. N. Sunaguchi, T. Yuasa, Q. Huo, S. Ichihara, and M. Ando, “Refraction-contrast tomosynthesis imaging using dark-field imaging optics,” Appl. Phys. Lett.99(10), 103704 (2011). [CrossRef]
  32. R. E. Alvarez and A. Macovski, “Energy-selective reconstructions in x-ray computerized tomography,” Phys. Med. Biol.21(5), 733–744 (1976). [CrossRef] [PubMed]
  33. M. Schabel, “3D Shepp-Logan phantom,” MATLAB Central File Exchange (2006).
  34. M. Ando, N. Sunaguchi, Y. Wu, S. Do, Y. Sung, A. Louissaint, T. Yuasa, S. Ichihara, and R. Gupta, “Crystal Analyser-based X-ray Phase Contrast Imaging in the Dark Field: Implementation and Evaluation using Excised Tissue Specimens,” Invest. Radiol.under review.
  35. N. Sunaguchi, T. Yuasa, Q. Huo, and M. Ando, “Convolution reconstruction algorithm for refraction-contrast computed tomography using a Laue-case analyzer for dark-field imaging,” Opt. Lett.36(3), 391–393 (2011). [CrossRef] [PubMed]
  36. L. Poletto, M. Caldon, G. Tondello, and A. Megighian, “A system for high-resolution x-ray phase-contrast imaging and tomography of biological specimens,” Proc. SPIE7078, 70781P, 70781P-10 (2008). [CrossRef]
  37. T. Tanaka, C. Honda, S. Matsuo, K. Noma, H. Oohara, N. Nitta, S. Ota, K. Tsuchiya, Y. Sakashita, A. Yamada, M. Yamasaki, A. Furukawa, M. Takahashi, and K. Murata, “The first trial of phase contrast imaging for digital full-field mammography using a practical molybdenum x-ray tube,” Invest. Radiol.40(7), 385–396 (2005). [CrossRef] [PubMed]
  38. G. Cao, Y. Z. Lee, R. Peng, Z. Liu, R. Rajaram, X. Calderón-Colon, L. An, P. Wang, T. Phan, S. Sultana, D. S. Lalush, J. P. Lu, and O. Zhou, “A dynamic micro-CT scanner based on a carbon nanotube field emission x-ray source,” Phys. Med. Biol.54(8), 2323–2340 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited