OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 15 — Jul. 29, 2013
  • pp: 17615–17624

Parametric seeding of a microresonator optical frequency comb

Scott B. Papp, Pascal Del’Haye, and Scott A. Diddams  »View Author Affiliations


Optics Express, Vol. 21, Issue 15, pp. 17615-17624 (2013)
http://dx.doi.org/10.1364/OE.21.017615


View Full Text Article

Enhanced HTML    Acrobat PDF (1427 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have investigated parametric seeding of a microresonator frequency comb (microcomb) by way of a pump laser with two electro-optic-modulation sidebands. We show that the pump-sideband spacing is precisely replicated throughout the microcomb’s optical spectrum, and we demonstrate a record absolute line-spacing stability for microcombs of 1.6 × 10−13 at 1 s. The spectrum of a microcomb is complex, and often non-equidistant subcombs are observed. Our results demonstrate that parametric seeding can not only control the subcombs, but can lead to the generation of a strictly equidistant microcomb spectrum.

© 2013 OSA

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(140.3948) Lasers and laser optics : Microcavity devices

ToC Category:
Nonlinear Optics

History
Original Manuscript: May 15, 2013
Revised Manuscript: July 1, 2013
Manuscript Accepted: July 5, 2013
Published: July 16, 2013

Citation
Scott B. Papp, Pascal Del’Haye, and Scott A. Diddams, "Parametric seeding of a microresonator optical frequency comb," Opt. Express 21, 17615-17624 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-15-17615


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. Gerginov, C. E. Tanner, S. A. Diddams, A. Bartels, and L. Hollberg, “High-resolution spectroscopy with a femtosecond laser frequency comb,” Opt. Lett.30, 1734–1736 (2005). [CrossRef] [PubMed]
  2. M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science311, 1595–1599 (2006). [CrossRef] [PubMed]
  3. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hansch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321, 1335–1337 (2008). [CrossRef] [PubMed]
  4. G. G. Ycas, F. Quinlan, S. A. Diddams, S. Osterman, S. Mahadevan, S. Redman, R. Terrien, L. Ramsey, C. F. Bender, B. Botzer, and S. Sigurdsson, “Demonstration of on-sky calibration of astronomical spectra using a 25 ghz near-ir laser frequency comb,” Opt. Express20, 6631–6643 (2012). [CrossRef] [PubMed]
  5. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450, 1214–1217 (2007). [CrossRef]
  6. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett.101, 093902–4 (2008). [CrossRef] [PubMed]
  7. I. S. Grudinin, N. Yu, and L. Maleki, “Generation of optical frequency combs with a caf2 resonator,” Opt. Lett.34, 878–880 (2009). [CrossRef] [PubMed]
  8. S. B. Papp and S. A. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A84, 053833– (2011). [CrossRef]
  9. S. B. Papp, P. Del’Haye, and S. A. Diddams, “Mechanical control of a microrod-resonator optical frequency comb,” PRXin press and arXiv:1205.4272v1 (2012).
  10. P. Del’Haye, S. B. Papp, and S. A. Diddams, “Hybrid electro-optically modulated microcombs,” Phys. Rev. Lett.109, 263901– (2012). [CrossRef]
  11. J. Li, H. Lee, T. Chen, and K. J. Vahala, “Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs,” Phys. Rev. Lett.109, 233901– (2012). [CrossRef]
  12. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “Cmos-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat Photon4, 37–40 (2010). [CrossRef]
  13. A. A. Savchenkov, E. Rubiola, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Phase noise of whispering gallery photonic hyper-parametric microwave oscillators,” Opt. Express16, 4130–4144 (2008). [CrossRef] [PubMed]
  14. P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett.101, 053903–4 (2008). [CrossRef]
  15. P. Del’Haye, S. A. Diddams, and S. B. Papp, “Laser-machined ultra-high-q microrod resonators for nonlinear optics,” Appl. Phys. Lett.102, 221119–4 (2013). [CrossRef]
  16. F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat Photon5, 770–776 (2011). [CrossRef]
  17. T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Mode-locking in an optical microresonator via soliton formation,” arXiv:1211.0733 (2012).
  18. K. Saha, Y. Okawachi, B. Shim, J. S. Levy, R. Salem, A. R. Johnson, M. A. Foster, M. R. E. Lamont, M. Lipson, and A. L. Gaeta, “Modelocking and femtosecond pulse generation in chip-based frequency combs,” Opt. Express21, 1335–1343 (2013). [CrossRef] [PubMed]
  19. T. Herr, K. Hartinger, J. Riemensberger, W. C. Y., E. Gavartin, R. L. Holzwarth, M. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of kerr-frequency combs in microresonators,” Nat Photon6, 480–487 (2012). [CrossRef]
  20. A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Optical hyperparametric oscillations in a whispering-gallery-mode resonator: Threshold and phase diffusion,” Phys. Rev. A71, 033804–10 (2005). [CrossRef]
  21. Y. K. Chembo, D. V. Strekalov, and N. Yu, “Spectrum and dynamics of optical frequency combs generated with monolithic whispering gallery mode resonators,” Phys. Rev. Lett.104, 103902–4 (2010). [CrossRef] [PubMed]
  22. H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-q wedge-resonator on a silicon chip,” Nat Photon6, 369–373 (2012). [CrossRef]
  23. M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett.85, 74–77 (2000). [CrossRef] [PubMed]
  24. T. Carmon, L. Yang, and K. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express12, 4742–4750 (2004). [CrossRef] [PubMed]
  25. D. V. Strekalov and N. Yu, “Generation of optical combs in a whispering gallery mode resonator from a bichromatic pump,” Phys. Rev. A79, 041805–4 (2009). [CrossRef]
  26. J. Li, H. Lee, K. Y. Yang, and K. J. Vahala, “Sideband spectroscopy and dispersion measurement in microcavities,” Opt. Express20, 26337–26344 (2012). [CrossRef] [PubMed]
  27. M. Kourogi, K. Nakagawa, and M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” Quantum Electronics, IEEE Journal of29, 2693–2701 (1993). [CrossRef]
  28. S. Xiao, L. Hollberg, and S. A. Diddams, “Generation of a 20 ghz train of subpicosecond pulses with a stabilized optical-frequency-comb generator,” Opt. Lett.34, 85–87 (2009). [CrossRef]
  29. T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photon.5, 425 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited