OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 15 — Jul. 29, 2013
  • pp: 17625–17638

Inherent optical properties of the coccolithophore: Emiliania huxleyi

Peng-Wang Zhai, Yongxiang Hu, Charles R. Trepte, David M. Winker, Damien B. Josset, Patricia L. Lucker, and George W. Kattawar  »View Author Affiliations

Optics Express, Vol. 21, Issue 15, pp. 17625-17638 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1865 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A realistic nonspherical model for Emiliania huxleyi (EHUX) is built, based on electron micrographs of coccolithophore cells. The Inherent Optical Properties (IOP) of the EHUX are then calculated numerically by using the discrete dipole approximation. The coccolithophore model includes a near-spherical core with the refractive index of 1.04 + mij, and a carbonate shell formed by smaller coccoliths with refractive index of 1.2 + mij, where mi = 0 or 0.01 and j2 = −1. The reported IOP are the Mueller scattering matrix, backscattering probability, and depolarization ratio. Our calculation shows that the Mueller matrices of coccolithophores show different angular dependence from those of coccoliths.

© 2013 OSA

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(290.1350) Scattering : Backscattering
(290.5850) Scattering : Scattering, particles
(290.7050) Scattering : Turbid media
(010.4458) Atmospheric and oceanic optics : Oceanic scattering

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: May 17, 2013
Revised Manuscript: June 20, 2013
Manuscript Accepted: July 6, 2013
Published: July 16, 2013

Virtual Issues
Vol. 8, Iss. 8 Virtual Journal for Biomedical Optics

Peng-Wang Zhai, Yongxiang Hu, Charles R. Trepte, David M. Winker, Damien B. Josset, Patricia L. Lucker, and George W. Kattawar, "Inherent optical properties of the coccolithophore: Emiliania huxleyi," Opt. Express 21, 17625-17638 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. D. Milliman, “Production and accumulation of calcium in the ocean,” Global Biogeochem. Cy.7, 927–957, (1993). [CrossRef]
  2. S. Ackleson, W. M. Balch, and P.M. Holligan, “Response of water leaving radiance to particulate calcite and chlorophyll a concentrations: A model for Gulf of Maine coccolithophore blooms,”J. Geophys. Res.99, 7483–7499, (1994). [CrossRef]
  3. A. Sadeghi, T. Dinter, M. Vountas, B. Taylor, M. Altenburg-Soppa, and A. Bracher, “Remote sensing of coccolithophore blooms in selected oceanic regions using the PhytoDOAS method applied to hyper-spectral satellite data,” Biogeoscience9, 2127–2143, (2012). [CrossRef]
  4. Y. Hu, “Using CALIPSO lidar backscatter measurements for improving estimation of air-sea CO2 fluxes”, Presentation at the A-Train Symposium, New Orleans, 25–28, Oct. 2010.
  5. S. Rodier, P. Zhai, D. B. Josset, Y. Hu, and M. Vaughan, “CALIPSO lidar measurements for ocean sub-surface studies,” presented at the 34th International Symposium on Remote Sensing of Environment, Sydney, Australia, 10–15, Apr. 2011.
  6. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters(Academic, 1994).
  7. M. Jonasz and G. Fournier, Light Scattering by Particles in Water: Theoretical and Experimental Foundations(Academic, 2007).
  8. W. S. Pegau, D. Gray, and J. R. V. Zaneveld, “Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity,” Appl. Opt.36, 6035–6046 (1997). [CrossRef] [PubMed]
  9. T. J. Petzold, “Volume scattering functions for selected ocean waters,” in Benchmark Papers in Optics: Light in the Sea, J. Tyler, ed. (Halstead, 1972), 3, 152–174.
  10. Ø. Svensen, Ø. Frette, and S. R. Erga, “Scattering properties of microalgae: the effect of cell size and cell wall,” Appl. Opt.46, 5762–5769 (2007). [CrossRef] [PubMed]
  11. X. Zhang, D. J. Gray, Y. Huot, Y. You, and L. Bi, “Comparison of optically derived particle size distributions: scattering over the full angular range versus diffraction at near forward angles,” Appl. Opt.51, 5085–5099 (2012). [CrossRef] [PubMed]
  12. P. J. Werdell and S. W. Bailey, “An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation,” Remote Sens. Environ.98, 122–140, (2005). [CrossRef]
  13. T. Dickey, M. L. Banner, P. Bhandari, T. Boyd, L. Carvalho, G. Chang, Y. Chao, H. Czerski, M. Darecki, C. Dong, D. Farmer, S. Freeman, J. Gemmrich, P. Gernez, N. Hall-Patch, B. Holt, S. Jiang, C. Jones, G. Kattawar, D. LeBel, L. Lenain, M. Lewis, Y. Liu, L. Logan, D. Manov, W. K. Melville, M. A. Moline, R. Morison, F. Nencioli, W. S. Pegau, B. Reineman, I. Robbins, R. Rttgers, H. Schultz, L. Shen, M. Shinki, M. Slivkoff, M. Soklski, F. Spada, N. Statom, D. Stramsk, P. Sutherland, M. Twardowski, S. Vagle, R. Van Dommelen, K. Voss, L. Washburn, J. Wei, H. Wijesekera, O. Wurl, D. Yang, S. Yildiz, Y. You, D. K. P. Yue, R. Zaneveld, and C. J. Zappa, “Introduction to special section on recent advances in the study of optical variability in the near-surface and upper ocean,”J. Geophys. Res.117, C00H20 (2012). [CrossRef]
  14. K. J. Voss and E. S. Fry, “Measurement of the Mueller matrix for ocean water,” Appl. Opt.23, 4427–4439 (1984). [CrossRef] [PubMed]
  15. E. S. Fry and K. J. Voss, “Measurement of the Mueller matrix for phytoplankton,” Limnol. Oceanogr.30, 1322–1326 (1985). [CrossRef]
  16. D. B. Shapiro, A. J. Hunt, M. S. Quinby-Hunt, and P. G. Hull, “Circular polarization effects in the light scattering from single and suspensions of dinoflagellates,” Proc. SPIE1537, Underwater Imaging, Photography, and Visibility, 30–41 (1991); [CrossRef]
  17. Ø. Svensen, J. J. Stamnes, M. Kildemo, L. Martin, S. Aas, S. R. Erga, and Ø. Frette, “Mueller matrix measurements of algae with different shape and size distributions,” Appl. Opt.50, 5149–5157 (2011). [CrossRef] [PubMed]
  18. H. Volten, J.F. de Haan, J.W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr.43, 1180–1197 (1998). [CrossRef]
  19. D. Stramski, A. Bricaud, and A. Morel, “Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community,” Appl. Opt.40, 2929–2945 (2001) [CrossRef]
  20. H. R. Gordon and T. Du, “Light scattering by nonspherical particles: application to coccoliths detached from Emiliania huxleyi,” Limnol. Oceanogr.46, 1438–1454 (2001). [CrossRef]
  21. H. R. Gordon, “Backscattering of light from disklike particles: is fine-scale structure or gross morphology more important?” Appl. Opt.45, 7166–7173 (2006). [CrossRef] [PubMed]
  22. H. R. Gordon, “Backscattering of light from disk-like particles with aperiodic angular fine structure,” Opt. Express15, 16424–16430 (2007). [CrossRef] [PubMed]
  23. H. R. Gordon, “Rayleigh-Gans scattering approximation: surprisingly useful for understanding backscattering from disk-like particles,” Opt. Express15, 5572–5588 (2007) [CrossRef] [PubMed]
  24. H. R. Gordon, T. J. Smyth, W. M. Balch, G. C. Boynton, and G. A. Tarran, “Light scattering by coccoliths detached from Emiliania huxleyi,” Appl. Opt.48, 6059–6073 (2009) [CrossRef] [PubMed]
  25. H. R. Gordon, “Light scattering and absorption by randomly-oriented cylinders: dependence on aspect ratio for refractive indices applicable for marine particles,” Opt. Express19, 4673–4691 (2011) [CrossRef] [PubMed]
  26. M.A. Yurkin and A. G. Hoekstra, “The discrete-dipole-approximation code ADDA: capabilities and known limitations,” J. Quant. Spectrosc. Radiat. Transfer112, 2234–2247 (2011). [CrossRef]
  27. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles, (Cambridge University, 2002).
  28. B. T. Draine and P. J. Flatau, “Discrete dipole approximation for scattering calculations,” J. Opt. Soc. Am. A,11, 1491–1499 (1994). [CrossRef]
  29. A. Taflove and S. C. Hagness, Advances in Computational Electrodynamics: the Finite-Difference-Time-Domain Method, 3rd ed. (Artech House, 2005).
  30. P. Yang and K. N. Liou, “Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space,” J. Opt. Soc. Am. A13, 2072–2085 (1996). [CrossRef]
  31. W. Sun, Q. Fu, and Z. Chen, “Finite-difference time-domain solution of light scattering by dielectric particles with a perfectly matched layer absorbing boundary condition,” Appl. Opt.38, 3141–3151 (1999) [CrossRef]
  32. P. Zhai, G. W. Kattawar, P. Yang, and C. Li, “Application of the symplectic finite-difference time-domain method to light scattering by small particles,” Appl. Opt.44, 1650–1656 (2005) [CrossRef] [PubMed]
  33. M. I. Mishchenko, N. T. Zakharova, G. Videen, N. G. Khlebtsov, and T. Wriedt, “Comprehensive T-matrix reference database: a 2007–2009 update,” J. Quant. Spectrosc. Radiat. Transfer111, 650–658. (2010) [CrossRef]
  34. M. A. Yurkin, A. G. Hoekstra, R. S. Brock, and J. Q. Lu, “Systematic comparison of the discrete dipole approximation and the finite difference time domain method for large dielectric scatterers,” Opt. Express15, 17902–17911 (2007). [CrossRef] [PubMed]
  35. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles(Wiley, 1998). [CrossRef]
  36. E. S. Fry and G. W. Kattawar, “Relationships between elements of the Stokes matrix,” Appl. Opt.20, 2811–2814, (1981). [CrossRef] [PubMed]
  37. Y. Hu, S. Rodier, K. Xu, W. Sun, J. Huang, B. Lin, P. Zhai, and D. Josset, “Occurrence, liquid water content, and fraction of supercooled water clouds from combined CALIOP/IIR/MODIS measurements,” J. Geophys. Res.115, D00H34, (2010). [CrossRef]
  38. M. Kahnert, T. Nousiainen, M. A. Thomas, and J. Tyynelä, “Light scattering by particles with small-scale surface roughness: Comparison off our classes of model geometries,” J. Quant. Spectrosc. Radiat. Transfer113, 2356–2367, (2012). [CrossRef]
  39. J. E. Hansen and L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev.16, 527–610, (1974). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited