OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 15 — Jul. 29, 2013
  • pp: 17671–17685

Scalable photonic quantum computing assisted by quantum-dot spin in double-sided optical microcavity

Hai-Rui Wei and Fu-Guo Deng  »View Author Affiliations

Optics Express, Vol. 21, Issue 15, pp. 17671-17685 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1884 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the possibility of achieving scalable photonic quantum computing by the giant optical circular birefringence induced by a quantum-dot spin in a double-sided optical microcavity as a result of cavity quantum electrodynamics. We construct a deterministic controlled-not gate on two photonic qubits by two single-photon input-output processes and the readout on an electron-medium spin confined in an optical resonant microcavity. This idea could be applied to multi-qubit gates on photonic qubits and we give the quantum circuit for a three-photon Toffoli gate. High fidelities and high efficiencies could be achieved when the side leakage to the cavity loss rate is low. It is worth pointing out that our devices work in both the strong and the weak coupling regimes.

© 2013 OSA

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.5580) Quantum optics : Quantum electrodynamics
(270.5585) Quantum optics : Quantum information and processing
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Quantum Optics

Original Manuscript: April 4, 2013
Revised Manuscript: May 25, 2013
Manuscript Accepted: June 15, 2013
Published: July 17, 2013

Hai-Rui Wei and Fu-Guo Deng, "Scalable photonic quantum computing assisted by quantum-dot spin in double-sided optical microcavity," Opt. Express 21, 17671-17685 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A52, 3457–3457 (1995). [CrossRef] [PubMed]
  2. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature (London)409, 46–52 (2001). [CrossRef]
  3. T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Probabilistic quantum logic operations using polarizing beam splitters,” Phys. Rev. A64, 062311 (2001). [CrossRef]
  4. E. Knill, “Quantum gates using linear optics and postselection,” Phys. Rev. A66, 052306 (2002). [CrossRef]
  5. M. A. Nielsen, “Optical quantum computation using cluster states,” Phys. Rev. Lett.93, 040503 (2004). [CrossRef] [PubMed]
  6. D. E. Browne and T. Rudolph, “Resource-efficient linear optical quantum computation,” Phys. Rev. Lett.95, 010501 (2005). [CrossRef] [PubMed]
  7. T. B. Pittman, M. J. Fitch, B. C. Jacobs, and J. D. Franson, “Experimental controlled-not logic gate for single photons in the coincidence basis,” Phys. Rev. A68, 032316 (2003). [CrossRef]
  8. J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-not gate,” Nature (London)426, 264–267 (2003). [CrossRef]
  9. S. Gasparoni, J. W. Pan, P. Walther, T. Rudolph, and A. Zeilinger, “Realization of a photonic controlled-not gate sufficient for quantum computation,” Phys. Rev. Lett.93, 020504 (2004). [CrossRef] [PubMed]
  10. Y. Y. Shi, “Both Toffoli and controlled-not need little help to do universal quantum computation,” Quantum Inf. Comput.3, 084–092 (2003).
  11. J. Fiurášek, “Linear-optics quantum Toffoli and Fredkin gates,” Phys. Rev. A73, 062313 (2006). [CrossRef]
  12. V. V. Shende and I. L. Markov, “On the CNOT-cost of Toffoli gate,” Quantum Inf. Comput.9, 0461–0486 (2009).
  13. K. Nemoto and W. J. Munro, “Nearly deterministic linear optical controlled-not gate,” Phys. Rev. Lett.93, 250502 (2004). [CrossRef]
  14. Q. Lin and J. Li, “Quantum control gates with weak cross-Kerr nonlinearity,” Phys. Rev. A79, 022301 (2009). [CrossRef]
  15. W. J. Munro, K. Nemoto, and T. P. Spiller, “Weak nonlinearities: A new route to optical quantum computation,” New J. Phys.7, 137 (2005). [CrossRef]
  16. T. P. Spiller, K. Nemoto, S. L. Braunstein, W. J. Munro, P. van Loock, and G. J. Milburn, “Quantum computation by communication,” New J. Phys.8, 30 (2006). [CrossRef]
  17. Q. Lin and B. He, “Single-photon logic gates using minimal resources,” Phys. Rev. A80, 042310 (2009). [CrossRef]
  18. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys.77, 633–673 (2005). [CrossRef]
  19. H. Schmidt and A. Imamogdlu, “Giant Kerr nonlinearities obtained by electromagnetically induced transparency,” Opt. Lett.21, 1936–1938 (1996). [CrossRef] [PubMed]
  20. D. Loss and D. P. DiVincenzo, “Quantum computation with quantum dots,” Phys. Rev. A57, 120–126 (1998). [CrossRef]
  21. A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett.83, 4204–4207 (1999). [CrossRef]
  22. C. Piermarocchi, P. C. Chen, L. J. Sham, and D. G. Steel, “Optical RKKY interaction between charged semiconductor quantum dots,” Phys. Rev. Lett.89, 167402 (2002). [CrossRef] [PubMed]
  23. T. Calarco, A. Datta, P. Fedichev, E. Pazy, and P. Zoller, “Spin-based all-optical quantum computation with quantum dots: Understanding and suppressing decoherence,” Phys. Rev. A68, 012310 (2003). [CrossRef]
  24. S. M. Clark, K. M. C. Fu, T. D. Ladd, and Y. Yamamoto, “Quantum computers based on electron spins controlled by ultrafast off-resonant single optical pulses,” Phys. Rev. Lett.99, 040501 (2007). [CrossRef] [PubMed]
  25. Z. R. Lin, G. P. Guo, T. Tu, F. Y. Zhu, and G. C. Guo, “Generation of quantum-dot cluster states with a superconducting transmission line resonator,” Phys. Rev. Lett.101, 230501 (2008). [CrossRef] [PubMed]
  26. J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science309, 2180–2184 (2005). [CrossRef] [PubMed]
  27. A. Greilich, D. R. Yakovlev, A. Shabaev, A. L. Efros, I. A. Yugova, R. Oulton, V. Stavarache, D. Reuter, A. Wieck, and M. Bayer, “Mode locking of electron spin coherences in singly charged quantum dots,” Science313, 341–345 (2006). [CrossRef] [PubMed]
  28. A. Greilich, A. Shabaev, D. R. Yakovlev, A. L. Efros, I. A. Yugova, D. Reuter, A. D. Wieck, and M. Bayer, “Nuclei-induced frequency focusing of electron spin coherence,” Science317, 1896–1899 (2007). [CrossRef] [PubMed]
  29. X. D. Xu, W. Yao, B. Sun, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Optically controlled locking of the nuclear field via coherent dark-state spectroscopy,” Nature (London)459, 1105–1109 (2009). [CrossRef]
  30. D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science325, 70–72 (2009). [CrossRef] [PubMed]
  31. D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, and Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nature Photon.4, 367–370 (2010). [CrossRef]
  32. M. Atatre, J. Dreiser, A. Badolato, A. Hogele, K. Karrai, and A. Imamoglu, “Quantum-dot spin-state preparation with near-unity fidelity,” Science312, 551–553 (2006). [CrossRef]
  33. X. D. Xu, Y. W. Wu, B. Sun, Q. Huang, J. Cheng, D. G. Steel, A. S. Bracker, D. Gammon, C. Emary, and L. J. Sham, “Fast spin state initialization in a singly charged InAs-GaAs quantum dot by optical cooling,” Phys. Rev. Lett.99, 097401 (2007). [CrossRef] [PubMed]
  34. J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, and D. D. Awschalom, “Picosecond coherent optical manipulation of a single electron spin in a quantum dot,” Science320, 349–352 (2008). [CrossRef] [PubMed]
  35. D. Press, T. D. Ladd, B. Y. Zhang, and Y. Yamamoto, “Complete quantum control of a single quantum dot spin using ultrafast optical pulses,” Nature (London)456, 218–221 (2008). [CrossRef]
  36. A. Greilich, S. E. Economou, S. Spatzek, D. R. Yakovlev, D. Reuter, A. D. Wieck, T. L. Reinecke, and M. Bayer, “Ultrafast optical rotations of electron spins in quantum dots,” Nature Phys.5, 262–266 (2009). [CrossRef]
  37. C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon,” Phys. Rev. B78, 085307 (2008). [CrossRef]
  38. C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B80, 205326 (2009). [CrossRef]
  39. C. Y. Hu, W. J. Munro, and J. G. Rarity, “Deterministic photon entangler using a charged quantum dot inside a microcavity,” Phys. Rev. B78, 125318 (2008). [CrossRef]
  40. C. Y. Hu and J. G. Rarity, “Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity,” Phys. Rev. B83, 115303 (2011). [CrossRef]
  41. C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett.104, 160503 (2010). [CrossRef] [PubMed]
  42. H. R. Wei and F. G. Deng, “Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities,” Phys. Rev. A87, 022305 (2013). [CrossRef]
  43. B. C. Ren, H. R. Wei, and F. G. Deng, “Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by quantum dot inside one-side optical microcavity,” Laser Phys. Lett. (accepted); arXiv:1303.0056.
  44. T. J. Wang, S. Y. Song, and G. L. Long, “Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities,” Phys. Rev. A85, 062311 (2012). [CrossRef]
  45. C. Wang, Y. Zhang, and R. Zhang, “Entanglement purification based on hybrid entangled state using quantum-dot and microcavity coupled system,” Opt. Express19, 25685–25695 (2011). [CrossRef]
  46. C. Wang, Y. Zhang, and G. S. Jin, “Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities,” Phys. Rev. A84, 032307 (2011). [CrossRef]
  47. B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, “Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities,” Opt. Express20, 24664–24677 (2012). [CrossRef] [PubMed]
  48. T. J. Wang, Y. Lu, and G. L. Long, “Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities,” Phys. Rev. A86, 042337 (2012). [CrossRef]
  49. R. J. Warburton, C. S. Dürr, K. Karrai, J. P. Kotthaus, G. M. Ribeiro, and P. M. Petroff, “Charged excitons in self-assembled semiconductor quantum dots,” Phys. Rev. Lett.79, 5282–5285 (1997). [CrossRef]
  50. C. Y. Hu, W. Ossau, D. R. Yakovlev, G. Landwehr, T. Wojtowicz, G. Karczewski, and J. Kossut, “Optically detected magnetic resonance of excess electrons in type-I quantum wells with a low-density electron gas,” Phys. Rev. B58, R1766–R1769 (1998). [CrossRef]
  51. C. Bonato, D. Ding, J. Gudat, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, and D. Bouwmeester, “Tuning micropillar cavity birefringence by laser induced surface defects,” Appl. Phys. Lett.95, 251104 (2009). [CrossRef]
  52. J. Gudat, C. Bonato, E. van Nieuwenburg, S. Thon, H. Kim, P. M. Petroff, M. P. van Exter, and D. Bouwmeester, “Permanent tuning of quantum dot transitions to degenerate microcavity resonances,” Appl. Phys. Lett.98, 121111 (2011). [CrossRef]
  53. C. Bonato, E. van Nieuwenburg, J. Gudat, S. Thon, H. Kim, M. P. van Exter, and D. Bouwmeester, “Strain tuning of quantum dot optical transitions via laser-induced surface defects,” Phys. Rev. B84, 075306 (2011). [CrossRef]
  54. I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett.100, 121116 (2012). [CrossRef]
  55. J. Hagemeier, C. Bonato, T. A. Truong, H. Kim, G. J. Beirne, M. Bakker, M. P. van Exter, Y. Q. Luo, P. Petroff, and D. Bouwmeester, “H1 photonic crystal cavities for hybrid quantum information protocols,” Opt. Express20, 24714 (2012). [CrossRef] [PubMed]
  56. M. V. G. Dutt, J. Cheng, B. Li, X. D. Xu, X. Q. Li, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, S. E. Economou, R. B. Liu, and L. J. Sham, “Stimulated and spontaneous optical generation of electron spin coherence in charged GaAs quantum dots,” Phys. Rev. Lett.94, 227403 (2005). [CrossRef] [PubMed]
  57. J. M. Elzerman, R. Hanson, L. H. W. van Beveren, B. Witkamp, L. M. K. Vandersypen, and L. P. Kouwenhoven, “Single-shot read-out of an individual electron spin in a quantum dot,” Nature (London)430, 431–425 (2004). [CrossRef]
  58. M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G. Abstreiter, and J. J. Finley, “Optically programmable electron spin memory using semiconductor quantum dots,” Nature (London)432, 81–84 (2004). [CrossRef]
  59. M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, and A. Forchel, “Fine structure of neutral and charged excitons in self-assembled In(Ga)/As(Al)GaAs quantum dots,” Phys. Rev. B65, 195315 (2002). [CrossRef]
  60. J. J. Finley, D. J. Mowbray, M. S. Skolnick, A. D. Ashmore, C. Baker, and A. F. G. Monte, “Fine structure of charged and neutral excitons in InAs-Al0.6Ga0.4As quantum dots,” Phys. Rev. B66, 153316 (2002). [CrossRef]
  61. D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag, Berlin, 1994).
  62. S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett.90, 251109 (2007). [CrossRef]
  63. J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London)432, 197–200 (2004). [CrossRef]
  64. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London)432, 200–203 (2004). [CrossRef]
  65. A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reitzenstein, M. Kamp, S. Höfling, L. Worschech, A. Forchel, and J. G. Rarity, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A84, 011803 (2011). [CrossRef]
  66. By taking g/(κ+ κs) = 1.0,κs/κ= 0.7 and γ= 0.1κfor a micropillar microcavitr with diameter d= 1.5μm, Q= 1.7 × 104, one can get n0= 2 × 10−3, τ= 9 ps, and τ/n0= 4.5 ns.
  67. P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett.87, 157401 (2001). [CrossRef] [PubMed]
  68. D. Birkedal, K. Leosson, and J. M. Hvam, “Long lived coherence in self-assembled quantum dots,” Phys. Rev. Lett.87, 227401 (2001). [CrossRef] [PubMed]
  69. W. Langbein, P. Borri, U. Woggon, V. Stavarache, D. Reuter, and A. D. Wieck, “Radiatively limited dephasing in InAs quantum dots,” Phys. Rev. B70, 033301 (2004). [CrossRef]
  70. D. Heiss, S. Schaeck, H. Huebl, M. Bichler, G. Abstreiter, J. J. Finley, D. V. Bulaev, and D. Loss, “Observation of extremely slow hole spin relaxation in self-assembled quantum dots,” Phys. Rev. B76, 241306 (2007). [CrossRef]
  71. B. D. Gerardot, D. Brunner, P. A. Dalgarno, P. Öhberg, S. Seidl, M. Kroner, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “Optical pumping of a single hole spin in a quantum dot,” Nature (London)451, 441–444 (2008). [CrossRef]
  72. D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science325, 70–72 (2009). [CrossRef] [PubMed]
  73. G. Bester, S. Nair, and A. Zunger, “Pseudopotential calculation of the excitonic fine structure of million-atom self-assembled In1−xGaxAs/GaAs quantum dots,” Phys. Rev. B67, 161306 (2003). [CrossRef]
  74. H. J. Kimble, Cavity Quantum Electrodynamics (Academic, San Diego, 1994).
  75. R. Ionicioiu, T. P. Spiller, and W. J. Munro, “Generalized Toffoli gates using qudit catalysis,” Phys. Rev. A80, 012312 (2009). [CrossRef]
  76. W. L. Yang, H. Wei, F. Zhou, and M. Feng, “Generation of multi-atom entangled states and implementation of controlled-phase gating using photonic modules,” J. Phys. B: At. Mol. Opt. Phys.42, 055503 (2009). [CrossRef]
  77. L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interaction,” Phys. Rev. Lett.92, 127902 (2004). [CrossRef] [PubMed]
  78. S. J. Devitt, A. D. Greentree, R. Ionicioiu, J. L. O’Brien, W. J. Munro, and L. C. L. Hollenberg, “Photonic module: An on-demand resource for photonic entanglement,” Phys. Rev. A76, 052312 (2007). [CrossRef]
  79. J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-out process with respect to low cavities,” Phy. Rev. A79, 032303 (2009). [CrossRef]
  80. C. W. Wong, J. Gao, J. F. McMillan, F.W. Sun, and R. Bose, “Quantum information processing through quantum dots in slow-light photonic crystal waveguides,” Photonics and Nanostructures-Fundamentals and Applications7, 47 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited