OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 15 — Jul. 29, 2013
  • pp: 17701–17710

Theoretical modeling and experiments on a DBR waveguide laser fabricated by the femtosecond laser direct-write technique

Yuwen Duan, Aaron McKay, Nemanja Jovanovic, Martin Ams, Graham D. Marshall, M. J. Steel, and Michael J. Withford  »View Author Affiliations


Optics Express, Vol. 21, Issue 15, pp. 17701-17710 (2013)
http://dx.doi.org/10.1364/OE.21.017701


View Full Text Article

Enhanced HTML    Acrobat PDF (1629 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Abstract: We present a model for a Yb-doped distributed Bragg reflector (DBR) waveguide laser fabricated in phosphate glass using the femtosecond laser direct-write technique. The model gives emphasis to transverse integrals to investigate the energy distribution in a homogenously doped glass, which is an important feature of femtosecond laser inscribed waveguide lasers (WGLs). The model was validated with experiments comparing a DBR WGL and a fiber laser, and then used to study the influence of distributed rare earth dopants on the performance of such lasers. Approximately 15% of the pump power was absorbed by the doped “cladding” in the femtosecond laser inscribed Yb doped WGL case with the length of 9.8 mm. Finally, we used the model to determine the parameters that optimize the laser output such as the waveguide length, output coupler reflectivity and refractive index contrast.

© 2013 OSA

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.3430) Lasers and laser optics : Laser theory
(140.7090) Lasers and laser optics : Ultrafast lasers
(130.2755) Integrated optics : Glass waveguides
(140.3615) Lasers and laser optics : Lasers, ytterbium

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: October 22, 2012
Revised Manuscript: May 31, 2013
Manuscript Accepted: July 11, 2013
Published: July 17, 2013

Citation
Yuwen Duan, Aaron McKay, Nemanja Jovanovic, Martin Ams, Graham D. Marshall, M. J. Steel, and Michael J. Withford, "Theoretical modeling and experiments on a DBR waveguide laser fabricated by the femtosecond laser direct-write technique," Opt. Express 21, 17701-17710 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-15-17701


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-21-21-1729 . [CrossRef] [PubMed]
  2. G. Della Valle, S. Taccheo, R. Osellame, A. Festa, G. Cerullo, and P. Laporta, “1.5 mum single longitudinal mode waveguide laser fabricated by femtosecond laser writing,” Opt. Express15(6), 3190–3194 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-6-3190 . [CrossRef] [PubMed]
  3. R. Mary, S. J. Beecher, G. Brown, R. R. Thomson, D. Jaque, S. Ohara, and A. K. Kar, “Compact, highly efficient ytterbium doped bismuthate glass waveguide laser,” Opt. Lett.37(10), 1691–1693 (2012), http://ol.osa.org/abstract.cfm?URI=ol-37-10-1691 . [CrossRef] [PubMed]
  4. G. D. Marshall, P. Dekker, M. Ams, J. A. Piper, and M. J. Withford, “Directly written monolithic waveguide laser incorporating a distributed feedback waveguide-Bragg grating,” Opt. Lett.33(9), 956–958 (2008), http://ol.osa.org/abstract.cfm?URI=ol-33-9-956 . [CrossRef] [PubMed]
  5. J. A. Valles, A. Ferrer, J. A. Sanchez-Martin, A. R. de la Cruz, M. A. Rebolledo, and J. Solis, “New characterization technique for femtosecond laser written waveguides in Yb/Er-codoped glass,” IEEE J. Quantum Electron.46(6), 996–1002 (2010). [CrossRef]
  6. I. Kelson and A. A. Hardy, “Strongly pumped fiber lasers,” IEEE J. Quantum Electron.34(9), 1570–1577 (1998). [CrossRef]
  7. M. A. Rebolledo and S. Jarabo, “Erbium-doped silica fiber modeling with overlapping factors,” Appl. Opt.33(24), 5585–5593 (1994), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-33-24-5585 . [CrossRef] [PubMed]
  8. I. Baumann, R. Brinkmann, M. Dinand, W. Sohler, and S. Westenhofer, “Ti:Er:LiNbO3 waveguide laser of optimized efficiency,” IEEE J. Quantum Electron.32(9), 1695–1706 (1996). [CrossRef]
  9. C. Florea and K. A. Winick, “Ytterbium-doped glass waveguide laser fabricated by ion exchange,” J. Lightwave Technol.17(9), 1593–1601 (1999). [CrossRef]
  10. M. Ams, G. Marshall, D. Spence, and M. Withford, “Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses,” Opt. Express13(15), 5676–5681 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-15-5676 . [CrossRef] [PubMed]
  11. M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev. 3, 535–544 (2009). http://www.opticsexpress.org/abstract.cfm?URI=oe-13-15-5676
  12. A. K. Mairaj, P. Hua, H. N. Rutt, and D. W. Hewak, “Fabrication and characterization of continuous wave direct UV (λ=244 nm) written channel waveguides in chalcogenide (Ga:La:S) glass,” J. Lightwave Technol.20(8), 1578–1584 (2002). [CrossRef]
  13. H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region,” IEEE J. Sel. Top. Quantum Electron.1(1), 2–13 (1995). [CrossRef]
  14. C. R. Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” J. Lightwave Technol.9(2), 271–283 (1991). [CrossRef]
  15. C. Henry, “Theory of spontaneous emission noise in open resonators and its application to lasers and optical amplifiers,” J. Lightwave Technol.4(3), 288–297 (1986). [CrossRef]
  16. R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibres,” Opt. Commun.136(5-6), 375–378 (1997). [CrossRef]
  17. A. V. Kir’yanov, Y. O. Barmenkov, I. L. Martinez, A. S. Kurkov, and E. M. Dianov, “Cooperative luminescence and absorption in ytterbium-doped silica fiber and the fiber nonlinear transmission coefficient at λ=980 nm with a regard to the ytterbium ion-pairs’ effect,” Opt. Express14(9), 3981–3992 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?id=89603 . [CrossRef] [PubMed]
  18. M. J. V. Bell, W. G. Quirino, S. L. Oliveira, D. F. de Sousa, and L. A. O. Nunes, “Cooperative luminescence in Yb3+ -doped phosphate glasses,” J. Phys. Condens. Matter15(27), 4877–4887 (2003). [CrossRef]
  19. T. G. Ryan and S. D. Jackson, “Cooperative luminescence and absorption in ytterbium doped aluminosilicate glass optical fibres and preforms,” Opt. Commun.273(1), 159–161 (2007). [CrossRef]
  20. J. Qiu and Y. Kawamoto, “Blue up-conversion luminescence and energy transfer process in Nd3+-Yb3+-Tm3+ co-doped ZrF4-based glasses,” J. Appl. Phys.91(3), 954–959 (2002). [CrossRef]
  21. D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, “Fifty percent internal slope efficiency femtosecond direct-written Tm³⁺:ZBLAN waveguide laser,” Opt. Lett.36(9), 1587–1589 (2011), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-36-9-1587 . [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited