OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 15 — Jul. 29, 2013
  • pp: 17736–17744

Subluminal and superluminal terahertz radiation in metamaterials with electromagnetically induced transparency

Zhengyang Bai, Chao Hang, and Guoxiang Huang  »View Author Affiliations

Optics Express, Vol. 21, Issue 15, pp. 17736-17744 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1942 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a scheme to design a new type of optical metamaterial that can mimic the functionality of four-state atomic systems of N-type energy-level configuration with electromagnetically induced transparency (EIT). We show that in such metamaterial a transition from a single EIT to a double EIT of terahertz radiation may be easily achieved by actively tuning the intensity of the infrared pump field or passively tuning the geometrical parameters of resonator structures. In addition, the group velocity of the terahertz radiation can be varied from subluminal to superluminal by changing the pump field intensity. The scheme suggested here may be used to construct chip-scale slow and fast light devices and to realize rapidly responded switching of terahertz radiation at room temperature.

© 2013 OSA

OCIS Codes
(020.1670) Atomic and molecular physics : Coherent optical effects
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: May 8, 2013
Revised Manuscript: June 26, 2013
Manuscript Accepted: July 3, 2013
Published: July 17, 2013

Zhengyang Bai, Chao Hang, and Guoxiang Huang, "Subluminal and superluminal terahertz radiation in metamaterials with electromagnetically induced transparency," Opt. Express 21, 17736-17744 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys.77, 633–673 (2005). [CrossRef]
  2. H. Wu, M. Xiao, and J. Gea-Banacloche, “Evidence of lasing without inversion in a hot rubidium vapor under electromagnetically induced transparency conditions,” Phys. Rev. A78, 041802(R) (2008). [CrossRef]
  3. T. N. Dey and G. S. Agarwal, “Observable effects of Kerr nonlinearity on slow light,” Phys. Rev. A76, 015802 (2007). [CrossRef]
  4. M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A60, 3225–3228 (1999). [CrossRef]
  5. M. D. Lukin and A. Imamoglu, “Nonlinear Optics and Quantum Entanglement of Ultraslow Single Photons,” Phys. Rev. Lett.84, 1419 (2000). [CrossRef] [PubMed]
  6. M. Fleischhauer and M. D. Lukin, “Quantum memory for photons: Dark-state polaritons,” Phys. Rev. A65, 022314 (2002). [CrossRef]
  7. J. Gea-Banacloche, M. Mumba, and M. Xiao, “Optical switching in arrays of quantum dots with dipole-dipole interaction,” Phys. Rev. B74, 165330 (2006). [CrossRef]
  8. Y. Wu and L. Deng, “Ultraslow Optical Solitons in a Cold Four-State Medium,” Phys. Rev. Lett.93, 143904 (2004). [CrossRef] [PubMed]
  9. G. Huang, L. Deng, and M. G. Payne, “Dynamics of ultraslow optical solitons in a cold three-state atomic system,” Phys. Rev. E72, 016617 (2005). [CrossRef]
  10. A. G. Litvak and M. D. Tokman, “Electromagnetically induced transparency in ensembles of classical oscillators,” Phys. Rev. Lett.88, 095003 (2002). [CrossRef] [PubMed]
  11. S. Satpathy, A. Roy, and A. Mohapatra, “Fano interference in classical oscillators,” Eur. J. Phys.33, 863–871 (2012). [CrossRef]
  12. C. L. G. Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys.70, 37–41 (2002). [CrossRef]
  13. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101, 047401 (2008). [CrossRef] [PubMed]
  14. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun.3, 1151 (2012). [CrossRef] [PubMed]
  15. Z. Han and S. I. Bozhevolnyi, “Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices,” Opt. Express19, 3251–3257 (2011). [CrossRef] [PubMed]
  16. Z. Dong, H. Liu, J. Cao, T. Li, S. Wang, S. Zhu, and X. Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials,” Appl. Phys. Lett.97, 114101 (2010). [CrossRef]
  17. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech.47, 2075–2084 (1999). [CrossRef]
  18. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental veritcation of a negative index of refraction,” Science292, 77–79 (2001). [CrossRef] [PubMed]
  19. N. Liu, M. Hentschel, T. Weiss, A. P. Alivisators, and H. Giessen, “Three-dimensional plasmon rulers,” Science332, 1407–1410 (2011). [CrossRef] [PubMed]
  20. C. Chen, I. Un, N. Tai, and T. Yen, “Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance,” Opt. Express17, 15372–15380 (2009). [CrossRef] [PubMed]
  21. R. Taubert, M. Hentschel, J. Kästel, and H. Giessen, “Classical analog of electromagnetically induced absorption in plasmonics,” Nano Lett.12, 1367–1371 (2012). [CrossRef] [PubMed]
  22. P. W. Milonni, Fast Light, Slow Light and Left-Handed Light (Institute of Phys. Publishing, Bristol, UK, 2005).
  23. L. J. Wang, A. Kuzmich, and P. Pogariu, “Superluminal solitons in a Lambda-type atomic system with two-folded levels,” Nature (London)406, 277 (2000). [CrossRef]
  24. G. S. Agarwal and S. Dasgupta, “Superluminal propagation via coherent manipulation of the Raman gain process,” Phys. Rev. A70, 023802 (2004). [CrossRef]
  25. C. Hang and G. Huang, “Giant Kerr nonlinearity and weak-light superluminal optical solitons in a four-state atomic system with gain doublet,” Opt. Express18, 2952–2966 (2010). [CrossRef] [PubMed]
  26. R. B. Li, L. Deng, and E. D. Hagley, “Fast, All-Optical, Zero to π Continuously Controllable Kerr Phase Gates,”, Phys. Rev. Lett.110, 113903 (2013). [CrossRef]
  27. D. Han, H. Guo, Y. Bai, and H. Sun, “Subluminal and superluminal propagation of light in an N-type medium,” Phys. Lett. A334, 243–248 (2005). [CrossRef]
  28. X. Liu, J. Gu, R. Singh, Y. Ma, J. Zhu, Z. Tian, M. He, J. Han, and W. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett.100, 131101 (2012). [CrossRef]
  29. Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express19, 8912–8919 (2011). [CrossRef] [PubMed]
  30. Y. Ma, Z. Li, Y. Yang, R. Huang, R. Singh, S. Zhang, J. Gu, Z. Tian, J. Han, and W. Zhang, “Plasmon-induced transparency in twisted Fano terahertz metamaterials,” Opt. Mat. Express1, 391–399 (2011). [CrossRef]
  31. Q. Bai, C. Liu, J. Chen, C. Cheng, M. Kang, and H.-T. Wang, “Tunable slow light in semiconductor metamaterial in a broad terahertz regime,” J. Appl. Phys.107(9), 093104 (2010). [CrossRef]
  32. Y. Lu, X. Jin, H. Zheng, Y. Lee, J. Y. Rhee, and W. H. Jang, “Plasmonic electromagnetically induced transparency in symmetric structures,” Opt. Express.18, 13396–13401 (2010). [CrossRef] [PubMed]
  33. Y. Lu, J. Rhee, W. Jang, and Y. Lee, “Active manipulation of plasmonic electromagnetically induced transparency based on magnetic plasmon resonance,” Opt. Express.1820912–20917 (2010). [CrossRef] [PubMed]
  34. V. T. T. Thuy, N. T. Tung, J. W. Park, V. D. Lam, Y. P. Lee, and J. Y. Rhee, “Highly dispersive transparency in coupled metamaterials,” J. Opt.12115102 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited