OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 15 — Jul. 29, 2013
  • pp: 17745–17750

Continuous-Wave Nd:YVO4 self-Raman lasers operating at 1109nm, 1158nm and 1231nm

Ran Li, Ralf Bauer, and Walter Lubeigt  »View Author Affiliations


Optics Express, Vol. 21, Issue 15, pp. 17745-17750 (2013)
http://dx.doi.org/10.1364/OE.21.017745


View Full Text Article

Enhanced HTML    Acrobat PDF (849 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Several continuous-wave Nd:YVO4 self-Raman lasers based on the primary and secondary Raman transitions of YVO4 (893cm−1 and 379cm−1 respectively) are reported in this paper. Laser outputs were obtained at a wavelength of 1109nm, 1158nm and 1231nm with maximum output powers of 1.0W, 700mW and 540mW respectively. The respective absorbed pump power to Raman output power conversion efficiencies were measured at 8.4%, 5.4%, and 5.4%.

© 2013 OSA

OCIS Codes
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3530) Lasers and laser optics : Lasers, neodymium
(140.3550) Lasers and laser optics : Lasers, Raman
(140.3580) Lasers and laser optics : Lasers, solid-state
(190.5650) Nonlinear optics : Raman effect

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: May 28, 2013
Revised Manuscript: July 11, 2013
Manuscript Accepted: July 12, 2013
Published: July 17, 2013

Citation
Ran Li, Ralf Bauer, and Walter Lubeigt, "Continuous-Wave Nd:YVO4 self-Raman lasers operating at 1109nm, 1158nm and 1231nm," Opt. Express 21, 17745-17750 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-15-17745


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Cerny, H. Jelinkova, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron.28(2), 113–143 (2004). [CrossRef]
  2. J. A. Piper and H. M. Pask, “Crystalline Raman lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 692–704 (2007). [CrossRef]
  3. J. H. Lock and K. C. S. Fong, “Retinal Laser Photocoagulation,” Med. J. Malaysia65(1), 88–94, quiz 95 (2010). [PubMed]
  4. H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron.32(3-4), 121–158 (2008). [CrossRef]
  5. A. S. Grabtchikov, V. A. Lisinetskii, V. A. Orlovich, M. Schmitt, R. Maksimenka, and W. Kiefer, “Multimode pumped continuous-wave solid-state Raman laser,” Opt. Lett.29(21), 2524–2526 (2004). [CrossRef] [PubMed]
  6. A. A. Demidovich, A. S. Grabtchikov, V. A. Lisinetskii, V. N. Burakevich, V. A. Orlovich, and W. Kiefer, “Continuous-wave Raman generation in a diode-pumped Nd3+:KGd(WO4)2 laser,” Opt. Lett.30(13), 1701–1703 (2005). [CrossRef] [PubMed]
  7. H. M. Pask, “Continuous-wave, all-solid-state, intracavity Raman laser,” Opt. Lett.30(18), 2454–2456 (2005). [CrossRef] [PubMed]
  8. Y. Lü, X. Zhang, S. Li, J. Xia, W. Cheng, and Z. Xiong, “All-solid-state cw sodium D2 resonance radiation based on intracavity frequency-doubled self-Raman laser operation in double-end diffusion-bonded Nd3+:LuVO4 crystal,” Opt. Lett.35(17), 2964–2966 (2010). [CrossRef] [PubMed]
  9. W. Lubeigt, V. G. Savitski, G. M. Bonner, S. L. Geoghegan, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “1.6 W continuous-wave Raman laser using low-loss synthetic diamond,” Opt. Express19(7), 6938–6944 (2011). [CrossRef] [PubMed]
  10. J. Jakutis-Neto, J. Lin, N. U. Wetter, and H. Pask, “Continuous-wave watt-level Nd:YLF/KGW Raman laser operating at near-IR, yellow and lime-green wavelengths,” Opt. Express20(9), 9841–9850 (2012). [CrossRef] [PubMed]
  11. O. Kitzler, A. McKay, and R. P. Mildren, “Continuous-wave wavelength conversion for high-power applications using an external cavity diamond Raman laser,” Opt. Lett.37(14), 2790–2792 (2012). [CrossRef] [PubMed]
  12. P. Dekker, H. M. Pask, D. J. Spence, and J. A. Piper, “Continuous-wave, intracavity doubled, self-Raman laser operation in Nd:GdVO4 at 586.5 nm,” Opt. Express15(11), 7038–7046 (2007). [CrossRef] [PubMed]
  13. A. J. Lee, H. M. Pask, D. J. Spence, and J. A. Piper, “Efficient 5.3 W cw laser at 559 nm by intracavity frequency summation of fundamental and first-Stokes wavelengths in a self-Raman Nd:GdVO4 laser,” Opt. Lett.35(5), 682–684 (2010). [CrossRef] [PubMed]
  14. T. Omatsu, M. Okida, A. Lee, and H. M. Pask, “Thermal lensing in a diode-end-pumped continuous-wave self-Raman Nd-doped GdVO4 laser,” Appl. Phys. B108(1), 73–79 (2012). [CrossRef]
  15. A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 – new efficient χ(3) - materials for Raman lasers,” Opt. Commun.194(1-3), 201–206 (2001). [CrossRef]
  16. Y. F. Chen, “Compact efficient self-frequency Raman conversion in diode-pumped passively Q-switched Nd:GdVO4 laser,” Appl. Phys. B78(6), 685–687 (2004). [CrossRef]
  17. Y. F. Chen, “High-power diode-pumped actively Q-switched Nd:YVO4 self-Raman laser: influence of dopant concentration,” Opt. Lett.29(16), 1915–1917 (2004). [CrossRef] [PubMed]
  18. H. Zhu, Y. Duan, G. Zhang, C. Huang, Y. Wei, W. Chen, Y. Huang, and N. Ye, “Yellow-light generation of 5.7 W by intracavity doubling self-Raman laser of YVO4/Nd:YVO4 composite,” Opt. Lett.34(18), 2763–2765 (2009). [CrossRef] [PubMed]
  19. F. Shuzhen, Z. Xingyu, W. Qingpu, L. Zhaojun, L. Lei, C. Zhenhua, C. Xiaohan, and Z. Xiaolei, “1097nm Nd:YVO4 self-Raman laser,” Opt. Commun.284(6), 1642–1644 (2011). [CrossRef]
  20. P. Dekker, H. M. Pask, and J. A. Piper, “All-solid-state 704 mW continuous-wave yellow source based on an intracavity, frequency-doubled crystalline Raman laser,” Opt. Lett.32(9), 1114–1116 (2007). [CrossRef] [PubMed]
  21. F. Su, X. Zhang, Q. Wang, S. Ding, P. Jia, S. Li, S. Fan, C. Zhang, and B. Liu, “Diode pumped actively Q-switched Nd:YVO4 self-Raman laser,” J. Phys. D Appl. Phys.39(10), 2090–2093 (2006). [CrossRef]
  22. S. Ding, M. Wang, S. Wang, and W. Zhang, “Investigation on LD end-pumped passively Q-switched c-cut Nd: YVO4 self-Raman laser,” Opt. Express21(11), 13052–13061 (2013). [CrossRef] [PubMed]
  23. X. Li, A. J. Lee, H. M. Pask, J. A. Piper, and Y. Huo, “330 mW CW yellow emission from miniature self-Raman laser based on direct HR-coated Nd:YVO4 crystal,” IQEC/CLEO Pacific Rim, p. C289 (2011).
  24. J. Lin and H. M. Pask, “Cascaded self-Raman lasers based on 382 cm-1 shift in Nd:GdVO4.,” Opt. Express20(14), 15180–15185 (2012). [CrossRef] [PubMed]
  25. E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics3(3), 144–147 (2009). [CrossRef]
  26. T. C. Damen, S. P. S. Porto, and B. Tell, “Raman Effect in Zinc Oxide,” Phys. Rev.142(2), 570–574 (1966). [CrossRef]
  27. J. T. Murray, W. L. Austin, and R. C. Powell, “Intracavity Raman conversion and Raman beam cleanup,” Opt. Mater.11, 353–371 (1999). [CrossRef]
  28. G. M. Bonner, Institute of Photonics, University of Strathclyde, 106 Rottenrow East, Glasgow, G4 0NW, UK, (personal communication, 2013).
  29. X. Li, A. J. Lee, Y. Huo, H. Zhang, J. Wang, J. A. Piper, H. M. Pask, and D. J. Spence, “Managing SRS competition in a miniature visible Nd:YVO4/BaWO4 Raman laser,” Opt. Express20(17), 19305–19312 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited