OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 15 — Jul. 29, 2013
  • pp: 17751–17759

Fano resonance formula for lossy two-port systems

Jae Woong Yoon and Robert Magnusson  »View Author Affiliations

Optics Express, Vol. 21, Issue 15, pp. 17751-17759 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1191 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We provide a modified Fano resonance formula applicable to dissipative two-port resonance systems. Based on a generic coupled-resonator model, the formula embodies loss-related correction terms and fundamental resonance parameters that can be determined by an analytic method or experimentally as opposed to finding phenomenological parameters by fitting to numerical results. The theory applies physically meaningful resonance parameters including resonance frequency, total decay rates, and partial radiation probabilities. For example, it shows that the classic Fano shape parameter q is given directly in terms of the phase difference between the resonant and non-resonant transmission pathways. Our new resonance formula quantitatively expresses the resonance spectra pertaining to modal nanophotonic and surface-plasmonic thin-film structures as verified by comparing with exact numerical models.

© 2013 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.5740) Physical optics : Resonance
(300.1030) Spectroscopy : Absorption
(310.2790) Thin films : Guided waves
(290.5825) Scattering : Scattering theory

ToC Category:
Optics at Surfaces

Original Manuscript: April 15, 2013
Revised Manuscript: July 5, 2013
Manuscript Accepted: July 15, 2013
Published: July 18, 2013

Jae Woong Yoon and Robert Magnusson, "Fano resonance formula for lossy two-port systems," Opt. Express 21, 17751-17759 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonance in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010). [CrossRef]
  2. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998). [CrossRef]
  3. C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun.225(4-6), 331–336 (2003). [CrossRef]
  4. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater.8(9), 758–762 (2009). [CrossRef] [PubMed]
  5. V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett.11(7), 2835–2840 (2011). [CrossRef] [PubMed]
  6. B. Gallinet and O. J. F. Martin, “Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B83(23), 235427 (2011). [CrossRef]
  7. M. Rahmani, B. Luk’yanchuk, and M. Hong, “Fano resonance in novel plasmonic nanostructures,” Laser Photon. Rev.7(3), 329–349 (2013). [CrossRef]
  8. N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev.111(6), 3913–3961 (2011). [CrossRef] [PubMed]
  9. R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett.61(9), 1022–1024 (1992). [CrossRef]
  10. J. M. Pottage, E. Silvestre, and P. St. J. Russell, “Vertical-cavity surface-emitting resonances in photonic crystal films,” J. Opt. Soc. Am. A18(2), 442–447 (2001). [CrossRef] [PubMed]
  11. Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-Index-Contrast Grating (HCG) and Its Applications in Optoelectronic Devices,” IEEE J. Sel. Top. Quantum Electron.15(5), 1485–1499 (2009). [CrossRef]
  12. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008). [CrossRef] [PubMed]
  13. R. Esteban, M. Laroche, and J. J. Greffet, “Dielectric gratings for wide-angle, broadband absorption by thin film photovoltaic cells,” Appl. Phys. Lett.97(22), 221111 (2010). [CrossRef]
  14. Z. Ruan and S. Fan, “Temporal coupled-mode theory for Fano resonance in light scattering by a single obstacle,” J. Phys. Chem. C114(16), 7324–7329 (2010). [CrossRef]
  15. B. Gallinet and O. J. F. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano5(11), 8999–9008 (2011). [CrossRef] [PubMed]
  16. I. Avrusky, R. Gibson, J. Sears, G. Khitrova, H. M. Gibbs, and J. Hendrickson, “Linear systems approach to describing and classifying Fano resonances,” Phys. Rev. B87, 128118 (2013).
  17. E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Nonreciprocal reflection of a subwavelength hole array,” Opt. Lett.28(20), 1906–1908 (2003). [CrossRef] [PubMed]
  18. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett.92(10), 107401 (2004). [CrossRef] [PubMed]
  19. J. W. Yoon, M. J. Jung, S. H. Song, and R. Magnusson, “Analytic theory of the resonance properties of metallic nanoslit arrays,” IEEE J. Quantum Electron.48(7), 852–861 (2012). [CrossRef]
  20. J. Yoon, K. H. Seol, S. H. Song, and R. Magnusson, “Critical coupling in dissipative surface-plasmon resonators with multiple ports,” Opt. Express18(25), 25702–25711 (2010). [CrossRef] [PubMed]
  21. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am.71(7), 811–818 (1981). [CrossRef]
  22. J. Yoon, S. H. Song, and J.-H. Kim, “Extraction efficiency of highly confined surface plasmon-polaritons to far-field radiation: an upper limit,” Opt. Express16(2), 1269–1279 (2008). [CrossRef] [PubMed]
  23. J. Chandezon, M. Dupuis, G. Cornet, and D. Maystre, “Multicoated gratings: a differential formalism applicable in the entire optical region,” J. Opt. Soc. Am.72(7), 839–846 (1982). [CrossRef]
  24. E. D. Palik, Handbook of Optical Constants of Solids II (Academic, 1998).
  25. D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett.89(4), 041111 (2006). [CrossRef]
  26. S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature453(7196), 757–760 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited