OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 15 — Jul. 29, 2013
  • pp: 17769–17785

Femtosecond parabolic pulse shaping in normally dispersive optical fibers

Igor A. Sukhoivanov, Sergii O. Iakushev, Oleksiy V. Shulika, Antonio Díez, and Miguel Andrés  »View Author Affiliations

Optics Express, Vol. 21, Issue 15, pp. 17769-17785 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1873 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Formation of parabolic pulses at femtosecond time scale by means of passive nonlinear reshaping in normally dispersive optical fibers is analyzed. Two approaches are examined and compared: the parabolic waveform formation in transient propagation regime and parabolic waveform formation in the steady-state propagation regime. It is found that both approaches could produce parabolic pulses as short as few hundred femtoseconds applying commercially available fibers, specially designed all-normal dispersion photonic crystal fiber and modern femtosecond lasers for pumping. The ranges of parameters providing parabolic pulse formation at the femtosecond time scale are found depending on the initial pulse duration, chirp and energy. Applicability of different fibers for femtosecond pulse shaping is analyzed. Recommendation for shortest parabolic pulse formation is made based on the analysis presented.

© 2013 OSA

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(320.5540) Ultrafast optics : Pulse shaping
(320.7110) Ultrafast optics : Ultrafast nonlinear optics
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Ultrafast Optics

Original Manuscript: April 30, 2013
Revised Manuscript: June 3, 2013
Manuscript Accepted: June 3, 2013
Published: July 18, 2013

Igor A. Sukhoivanov, Sergii O. Iakushev, Oleksiy V. Shulika, Antonio Díez, and Miguel Andrés, "Femtosecond parabolic pulse shaping in normally dispersive optical fibers," Opt. Express 21, 17769-17785 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Boscolo and C. Finot, “Nonlinear pulse shaping in fibres for pulse generation and optical processing,” Int. J. Opt.2012, 159057 (2012), doi:. [CrossRef]
  2. J. M. Dudley, C. Finot, D. J. Richardson, and G. Millot, “Self-similarity in ultrafast nonlinear optics,” Nat. Phys.3(9), 597–603 (2007), doi:. [CrossRef]
  3. C. Finot, J. M. Dudley, B. Kibler, D. J. Richardson, and G. Millot, “Optical parabolic pulse generation and applications,” IEEE J. Quantum Electron.45(11), 1482–1489 (2009), doi:. [CrossRef]
  4. C. Finot, S. Pitois, and G. Millot, “Regenerative 40 Gbit/s wavelength converter based on similariton generation,” Opt. Lett.30(14), 1776–1778 (2005), doi:. [CrossRef] [PubMed]
  5. F. Parmigiani, P. Petropoulos, M. Ibsen, and D. J. Richardson, “Pulse retiming based on XPM using parabolic pulses formed in a fiber Bragg grating,” IEEE Photon. Technol. Lett.18(7), 829–831 (2006), doi:. [CrossRef]
  6. S. Boscolo, S. K. Turitsyn, and K. J. Blow, “Time domain all-optical signal processing at a RZ optical receiver,” Opt. Express13(16), 6217–6227 (2005), doi:. [CrossRef] [PubMed]
  7. T. T. Ng, F. Parmigiani, M. Ibsen, Z. Zhang, P. Petropoulos, and D. J. Richardson, “Compensation of linear distortions by using XPM with parabolic pulses as a time lens,” IEEE Photon. Technol. Lett.20(13), 1097–1099 (2008), doi:. [CrossRef]
  8. P. Petropoulos, M. Ibsen, A. D. Ellis, and D. J. Richardson, “Rectangular pulse generations based on pulse reshaping using a superstructured fiber Bragg grating,” J. Lightwave Technol.19(5), 746–752 (2001), doi:. [CrossRef]
  9. D. Krcmarík, R. Slavík, Y. Park, and J. Azaña, “Nonlinear pulse compression of picosecond parabolic-like pulses synthesized with a long period fiber grating filter,” Opt. Express17(9), 7074–7087 (2009), doi:. [CrossRef] [PubMed]
  10. T. Hirooka, M. Nakazawa, and K. Okamoto, “Bright and dark 40 GHz parabolic pulse generation using a picosecond optical pulse train and an arrayed waveguide grating,” Opt. Lett.33(10), 1102–1104 (2008), doi:. [CrossRef] [PubMed]
  11. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, 2001).
  12. T. Hirooka and M. Nakazawa, “Parabolic pulse generation by use of a dispersion-decreasing fiber with normal group-velocity dispersion,” Opt. Lett.29(5), 498–500 (2004), doi:. [CrossRef] [PubMed]
  13. B. Kibler, C. Billet, P.-A. Lacourt, R. Ferriere, L. Larger, and J. M. Dudley, “Parabolic pulse generation in comb-like profiled dispersion decreasing fibre,” Electron. Lett.42(17), 965–966 (2006), doi:. [CrossRef]
  14. C. Finot, L. Provost, P. Petropoulos, and D. J. Richardson, “Parabolic pulse generation through passive nonlinear pulse reshaping in a normally dispersive two segment fiber device,” Opt. Express15(3), 852–864 (2007), doi:. [CrossRef] [PubMed]
  15. S. Boscolo, A. I. Latkin, and S. K. Turitsyn, “Passive nonlinear pulse shaping in normally dispersive fiber systems,” IEEE J. Quantum Electron.44(12), 1196–1203 (2008), doi:. [CrossRef]
  16. I. A. Sukhoivanov, S. O. Iakushev, O. V. Shulika, I. V. Guryev, J. A. Andrade Lucio, and O. G. Ibarra Manzano, “Formation of parabolic optical pulses in passive optical fibers,” Proc. SPIE8011, 801131, 801131-8 (2011), doi:. [CrossRef]
  17. S. O. Iakushev, O. V. Shulika, and I. A. Sukhoivanov, “Passive nonlinear reshaping towards parabolic pulses in the steady-state regime in optical fibers,” Opt. Commun.285(21-22), 4493–4499 (2012), doi:. [CrossRef]
  18. K. J. Blow and D. Wood, “Theoretical description of transient stimulated scattering in optical fibers,” IEEE J. Quantum Electron.25(12), 2665–2673 (1989), doi:. [CrossRef]
  19. J. Hult, “A fourth-order runge–kutta in the interaction picture method for simulating supercontinuum generation in optical fibers,” J. Lightwave Technol.25(12), 3770–3775 (2007), doi:. [CrossRef]
  20. C. Finot, F. Parmigiani, P. Petropoulos, and D. J. Richardson, “Parabolic pulse evolution in normally dispersive fiber amplifiers preceding the similariton formation regime,” Opt. Express14(8), 3161–3170 (2006), doi:. [CrossRef] [PubMed]
  21. D. Anderson, M. Desaix, M. Lisak, and M. L. Quiroga-Teixeiro, “Wave breaking in nonlinear-optical fibers,” J. Opt. Soc. Am. B9(8), 1358–1361 (1992), doi:. [CrossRef]
  22. www.thorlabs.com
  23. http://www.nktphotonics.com/lmafibers-specifications
  24. S. O. Iakushev, O. V. Shulika, and I. A. Sukhoivanov, “Sub-10-fs Pulses Produced From Compression of Supercontinuum Generated in All-Normal Dispersion Photonic Crystal Fiber,” in Frontiers in Optics Conference/ Laser Science, Technical Digest (CD) (Optical Society of America, 2012), paper FW3A.41. http://dx.doi.org/ [CrossRef]
  25. M. Koshiba and K. Saitoh, “Applicability of classical optical fiber theories to holey fibers,” Opt. Lett.29(15), 1739–1741 (2004), doi:. [CrossRef] [PubMed]
  26. K. Saitoh and M. Koshiba, “Empirical relations for simple design of photonic crystal fibers,” Opt. Express13(1), 267–274 (2005), doi:. [CrossRef] [PubMed]
  27. B. G. Bale, S. Boscolo, K. Hammani, and C. Finot, “Effects of fourth-order fiber dispersion on ultrashort parabolic optical pulses in the normal dispersion regime,” J. Opt. Soc. Am. B28(9), 2059–2065 (2011), doi:. [CrossRef]
  28. A. M. Heidt, J. Rothhardt, A. Hartung, H. Bartelt, E. G. Rohwer, J. Limpert, and A. Tünnermann, “High quality sub-two cycle pulses from compression of supercontinuum generated in all-normal dispersion photonic crystal fiber,” Opt. Express19(15), 13873–13879 (2011), doi:. [CrossRef] [PubMed]
  29. A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, and H. Bartelt, “Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers,” Opt. Express19(4), 3775–3787 (2011), doi:. [CrossRef] [PubMed]
  30. A. Hartung, A. M. Heidt, and H. Bartelt, “Design of all-normal dispersion microstructured optical fibers for pulse-preserving supercontinuum generation,” Opt. Express19(8), 7742–7749 (2011), doi:. [CrossRef] [PubMed]
  31. A. Bartels, D. Heinecke, and S. A. Diddams, “Passively mode-locked 10 GHz femtosecond Ti:sapphire laser,” Opt. Lett.33(16), 1905–1907 (2008), doi:. [CrossRef] [PubMed]
  32. H. Byun, M. Y. Sander, A. Motamedi, H. Shen, G. S. Petrich, L. A. Kolodziejski, E. P. Ippen, and F. X. Kärtner, “Compact, stable 1 GHz femtosecond Er-doped fiber lasers,” Appl. Opt.49(29), 5577–5582 (2010), doi:. [CrossRef] [PubMed]
  33. G. P. Agrawal, “Effect of intrapulse stimulated Raman scattering on soliton-effect pulse compression in optical fibers,” Opt. Lett.15(4), 224–226 (1990). [CrossRef] [PubMed]
  34. Y. Meng, S. Zhang, C. Jin, H. Li, and X. Wang, “Enhanced compression of femtosecond pulse in hollow-core photonic bandgap fibers,” Opt. Commun.283(11), 2411–2415 (2010). [CrossRef]
  35. S. Zhou, L. Kuznetsova, A. Chong, and F. Wise, “Compensation of nonlinear phase shifts with third-order dispersion in short-pulse fiber amplifiers,” Opt. Express13(13), 4869–4877 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited