OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 15 — Jul. 29, 2013
  • pp: 17786–17799

Nonlinear optics in the LP02 higher-order mode of a fiber

Y. Chen, Z. Chen, W. J. Wadsworth, and T. A. Birks  »View Author Affiliations


Optics Express, Vol. 21, Issue 15, pp. 17786-17799 (2013)
http://dx.doi.org/10.1364/OE.21.017786


View Full Text Article

Enhanced HTML    Acrobat PDF (1976 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The distinct disperion properties of higher-order modes in optical fibers permit the nonlinear generation of radiation deeper into the ultraviolet than is possible with the fundamental mode. This is exploited using adiabatic, broadband mode convertors to couple light efficiently from an input fundamental mode and also to return the generated light to an output fundamental mode over a broad spectral range. For example, we generate visible and UV supercontinuum light in the LP02 mode of a photonic crystal fiber from sub-ns pulses with a wavelength of 532 nm.

© 2013 OSA

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: May 2, 2013
Revised Manuscript: June 6, 2013
Manuscript Accepted: June 6, 2013
Published: July 18, 2013

Citation
Y. Chen, Z. Chen, W. J. Wadsworth, and T. A. Birks, "Nonlinear optics in the LP02 higher-order mode of a fiber," Opt. Express 21, 17786-17799 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-15-17786


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett.25(1), 25–27 (2000). [CrossRef] [PubMed]
  2. J. E. Sharping, M. Fiorentino, A. Coker, P. Kumar, and R. S. Windeler, “Four-wave mixing in microstructure fiber,” Opt. Lett.26(14), 1048–1050 (2001). [CrossRef] [PubMed]
  3. W. J. Wadsworth, N. Y. Joly, J. C. Knight, T. A. Birks, F. Biancalana, and P. St. J. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,” Opt. Express12(2), 299–309 (2004). [CrossRef] [PubMed]
  4. J. C. Travers, S. V. Popov, and J. R. Taylor, “Extended blue supercontinuum generation in cascaded holey fibers,” Opt. Lett.30(23), 3132–3134 (2005). [CrossRef] [PubMed]
  5. J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron.13(3), 738–749 (2007). [CrossRef]
  6. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum Generation in Photonic Crystal Fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006). [CrossRef]
  7. J. M. Dudley and J. R. Taylor, eds., Supercontinuum Generation in Optical Fibers (Cambridge Univ. Press, Cambridge, 2010).
  8. J. M. Stone and J. C. Knight, “From zero dispersion to group index matching: how tapering fibers offers the best of both worlds for visible supercontinuum generation,” Opt. Technol.18(5), 315–321 (2012). [CrossRef]
  9. J. van Howe, J. H. Lee, S. Zhou, F. Wise, C. Xu, S. Ramachandran, S. Ghalmi, and M. F. Yan, “Demonstration of soliton self-frequency shift below 1300 nm in higher-order mode, solid silica-based fiber,” Opt. Lett.32(4), 340–342 (2007). [CrossRef] [PubMed]
  10. S. Ramachandran, Z. Wang, and M. Yan, “Bandwidth control of long-period grating-based mode converters in few-mode fibers,” Opt. Lett.27(9), 698–700 (2002). [CrossRef] [PubMed]
  11. G. Stepniak, L. Maksymiuk, and J. Siuzdak, “Binary-phase spatial light filters for mode-selective excitation of multimode fibers,” J. Lightwave Technol.29(13), 1980–1987 (2011). [CrossRef]
  12. J. Carpenter and T. D. Wilkinson, “Characterization of multimode by selective mode excitation,” J. Lightwave Technol.30(10), 1386–1392 (2012). [CrossRef]
  13. J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, “Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping,” J. Opt. Soc. Am. B19(4), 765–771 (2002). [CrossRef]
  14. A. Mussot, T. Sylvestre, L. Provino, and H. Maillotte, “Generation of a broadband single-mode supercontinuum in a conventional dispersion-shifted fiber by use of a subnanosecond microchip laser,” Opt. Lett.28(19), 1820–1822 (2003). [CrossRef] [PubMed]
  15. C. Lesvigne, V. Couderc, A. Tonello, P. Leproux, A. Barthélémy, S. Lacroix, F. Druon, P. Blandin, M. Hanna, and P. Georges, “Visible supercontinuum generation controlled by intermodal four-wave mixing in microstructured fiber,” Opt. Lett.32(15), 2173–2175 (2007). [CrossRef] [PubMed]
  16. R. Cherif, M. Zghal, L. Tartara, and V. Degiorgio, “Supercontinuum generation by higher-order mode excitation in a photonic crystal fiber,” Opt. Express16(3), 2147–2152 (2008). [CrossRef] [PubMed]
  17. P. Nandi, Z. Chen, A. Witkowska, W. J. Wadsworth, T. A. Birks, and J. C. Knight, “Characterization of a photonic crystal fiber mode converter using low coherence interferometry,” Opt. Lett.34(7), 1123–1125 (2009). [CrossRef] [PubMed]
  18. K. Lai, S. G. Leon-Saval, A. Witkowska, W. J. Wadsworth, and T. A. Birks, “Wavelength-independent all-fiber mode converters,” Opt. Lett.32(4), 328–330 (2007). [CrossRef] [PubMed]
  19. A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibers,” Nat. Photonics1(11), 653–657 (2007). [CrossRef]
  20. J. M. Stone and J. C. Knight, “Visibly “white” light generation in uniform photonic crystal fiber using a microchip laser,” Opt. Express16(4), 2670–2675 (2008). [CrossRef] [PubMed]
  21. G. P. Agrawal, Nonlinear Fiber Optics, 4th Ed. (Academic Press, 2007).
  22. T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, “Dispersion compensation using single material fibers,” IEEE Photon. Technol. Lett.11, 674–676 (1999). [CrossRef]
  23. S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St J Russell, and M. W. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express12(13), 2864–2869 (2004). [CrossRef] [PubMed]
  24. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983) p. 253.
  25. G. J. Pearce, T. Hedley, and D. M. Bird, “Adaptive curvilinear coordinates in a plane-wave solution of Maxwell's equations in photonic crystals,” Phys. Rev. B71(19), 195108 (2005). [CrossRef]
  26. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett.12(7), 807–809 (2000). [CrossRef]
  27. M. Delgado-Pinar, P. J. Mosley, J. C. Knight, T. A. Birks, and W. J. Wadsworth, “Visible supercontinuum generation in the femtosecond regime in submicron structures,” Nonlinear Photonics Topical Meeting (Karlsruhe), paper NWD3 (2010). [CrossRef]
  28. C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol.12(10), 1746–1758 (1994). [CrossRef]
  29. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals, 2nd Ed. (Princeton Univ. Press, 2008).
  30. I. Gris-Sánchez, B. J. Mangan, and J. C. Knight, “Reducing spectral attenuation in small-core photonic crystal fibers,” Opt. Mater. Express1(2), 179–184 (2011). [CrossRef]
  31. L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids239(1-3), 16–48 (1998). [CrossRef]
  32. K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “Formation and decay of nonbridging oxygen hole centers in SiO2 glasses induced by F2 laser irradiation: In situ observation using a pump and probe technique,” Appl. Phys. Lett.79(12), 1757 (2001). [CrossRef]
  33. K. Nagasawa, Y. Hoshi, Y. Ohki, and K. Yahagi, “Improvement of radiation resistance of pure silica core fibers by hydrogen treatment,” Jpn. J. Appl. Phys.24(Part 1, No. 9), 1224–1228 (1985). [CrossRef]
  34. M. Tateda, N. Shibata, and S. Seikai, “Interferometric method for chromatic dispersion measurement in a single-mode optical fiber,” IEEE J. Quantum Electron.17(3), 404–407 (1981). [CrossRef]
  35. BeamPROP by RSoft, http://www.rsoft.com
  36. J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibers and devices,” IEE Proc. J 138, 343–354 (1991).
  37. A. V. Yulin, D. V. Skryabin, and P. St. J. Russell, “Four-wave mixing of linear waves and solitons in fibers with higher-order dispersion,” Opt. Lett.29(20), 2411–2413 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (169 KB)     
» Media 2: MOV (75 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited