OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 15 — Jul. 29, 2013
  • pp: 17806–17813

Carbon nanotube mode-locked optically-pumped semiconductor disk laser

K. Seger, N. Meiser, S. Y. Choi, B. H. Jung, D.-I. Yeom, F. Rotermund, O. Okhotnikov, F. Laurell, and V. Pasiskevicius  »View Author Affiliations


Optics Express, Vol. 21, Issue 15, pp. 17806-17813 (2013)
http://dx.doi.org/10.1364/OE.21.017806


View Full Text Article

Enhanced HTML    Acrobat PDF (1064 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An optically pumped semiconductor disk laser was mode-locked for the first time by employing a single-walled carbon nanotube saturable absorber. Stable passive fundamental mode-locking was obtained at a repetition rate of 613 MHz with a pulse length of 1.23 ps. The mode-locked semiconductor disk laser in a compact geometry delivered a maximum average output power of 136 mW at 1074 nm.

© 2013 OSA

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(160.4236) Materials : Nanomaterials
(140.7260) Lasers and laser optics : Vertical cavity surface emitting lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: May 7, 2013
Revised Manuscript: July 10, 2013
Manuscript Accepted: July 10, 2013
Published: July 18, 2013

Citation
K. Seger, N. Meiser, S. Y. Choi, B. H. Jung, D.-I. Yeom, F. Rotermund, O. Okhotnikov, F. Laurell, and V. Pasiskevicius, "Carbon nanotube mode-locked optically-pumped semiconductor disk laser," Opt. Express 21, 17806-17813 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-15-17806


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. F. Mollenauer, P. V. Mamyshev, J. Gripp, M. J. Neubelt, N. Mamysheva, L. Grüner-Nielsen, and T. Veng, “Demonstration of massive wavelength-division multiplexing over transoceanic distances by use of dispersion-managed solitons,” Opt. Lett.25(10), 704–706 (2000). [CrossRef] [PubMed]
  2. D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE88(6), 728–749 (2000). [CrossRef]
  3. E. Cassan, D. Marris, M. Rouviere, L. Vivien, and S. Laval, “Comparison between electrical and optical global clock distributions for CMOS integrated circuits,” Opt. Eng. 44, 105402 (2005).
  4. A. Bhatnagar, C. Debaes, R. Chen, N. C. Helman, G. A. Keeler, D. Agarwal, H. Thienpont, and D. A. B. Miller, “Receiver-less clocking of a CMOS digital circuit using short optical pulses,” in 2002 IEEE/LEOS Annual Meeting; Conference Proceedings, 15th Annual Meeting of the IEEE Lasers & Electro-Optics Society, Glasgow, Scotland, 2002, 127–8.
  5. A. V. Mule, E. N. Glytsis, T. K. Gaylord, and J. D. Meindl, “Electrical and optical clock distribution networks for gigascale microprocessors,” IEEE Trans. Very Large Scale Integration (VLSI) Systems10, 582–594 (2002).
  6. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature416(6877), 233–237 (2002). [CrossRef] [PubMed]
  7. K. Ohki, S. Chung, Y. H. Ch’ng, P. Kara, and R. C. Reid, “Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex,” Nature433(7026), 597–603 (2005). [CrossRef] [PubMed]
  8. M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett.9(8), 1063–1065 (1997). [CrossRef]
  9. C. Tropper, H. D. Foreman, A. Garnache, K. G. Wilcox, and S. H. Hoogland, “Vertical-external-cavity semiconductor lasers,” J. Phys. D37(9), R75–R85 (2004). [CrossRef]
  10. J. Chilla, S. Butterworth, A. Zeitschel, J. Charles, A. Caprara, M. Reed, and L. Spinelli, “High power optically pumped semiconductor lasers,” Proc. SPIE5332, 143–150 (2004). [CrossRef]
  11. U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T. Asom, “Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry-Perot saturable absorber,” Opt. Lett.17(7), 505–507 (1992). [CrossRef] [PubMed]
  12. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996). [CrossRef]
  13. U. Keller, “Recent developments in compact ultrafast lasers,” Nature424(6950), 831–838 (2003). [CrossRef] [PubMed]
  14. U. Keller and A. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep.429(2), 67–120 (2006). [CrossRef]
  15. M. Scheller, T. L. Wang, B. Kunert, W. Stolz, S. W. Koch, and J. V. Moloney, “Passively modelocked VECSEL emitting 682 fs pulses with 5.1 W of average output power,” Electron. Lett.48(10), 588–589 (2012). [CrossRef]
  16. A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, and A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics3(12), 729–731 (2009). [CrossRef]
  17. U. Griebner, P. Klopp, M. Zorn, and M. Weyers, “Harmonically and fundamentally mode-locked InGaAs-AlGaAs disk laser generating pulse repetition rates in the 100 GHz or pulse duratrions in the 100-fs range,” Proc. SPIEVol. 8242, 824205 (2012). [CrossRef]
  18. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Laser mode locking using a saturable absorber incorporating carbon nanotubes,” J. Lightwave Technol.22(1), 51–56 (2004). [CrossRef]
  19. H.-R. Chen, Y.-G. Wang, C.-Y. Tsai, K.-H. Lin, T.-Y. Chang, J. Tang, and W.-F. Hsieh, “High-power, passively mode-locked Nd:GdVO₄ laser using single-walled carbon nanotubes as saturable absorber,” Opt. Lett.36(7), 1284–1286 (2011). [CrossRef] [PubMed]
  20. I. H. Baek, S. Y. Choi, H. W. Lee, W. B. Cho, V. Petrov, A. Agnesi, V. Pasiskevicius, D. I. Yeom, K. Kim, and F. Rotermund, “Single-walled carbon nanotube saturable absorber assisted high-power mode-locking of a Ti:sapphire laser,” Opt. Express19(8), 7833–7838 (2011). [CrossRef] [PubMed]
  21. F. Rotermund, W. B. Cho, S. Y. Choi, I. H. Baek, J. H. Yim, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, D.-I. Yeom, K. Kim, and V. Petrov, “Mode-locking of solid-state lasers by single-walled carbon-nanotube based saturable absorbers,” Quantum Electron.42(8), 663–670 (2012). [CrossRef]
  22. J. H. Yim, W. B. Cho, S. Lee, Y. H. Ahn, K. Kim, H. Lim, G. Steinmeyer, V. Petrov, U. Griebner, and F. Rotermund, “Fabrication and characterization of ultrafast carbon nanotube saturable absorbers for solid-state laser mode-locking near 1 μm,” Appl. Phys. Lett.93(16), 161106 (2008). [CrossRef]
  23. G. J. Spühler, S. Reffert, M. Haiml, M. Moser, and U. Keller, “Output-coupling semiconductor saturable absorber mirror,” Appl. Phys. Lett.78(18), 2733–2735 (2001). [CrossRef]
  24. J. J. LePore, “An improved technique for selective etching of GaAs and Ga1-xAlxAs,” J. Appl. Phys.51(12), 6441–6442 (1980). [CrossRef]
  25. O. J. Korovyanko, C.-X. Sheng, Z. V. Vardeny, A. B. Dalton, and R. H. Baughman, “Ultrafast spectroscopy of excitons in single-walled carbon nanotubes,” Phys. Rev. Lett.92(1), 017403 (2004). [CrossRef] [PubMed]
  26. R. Grange, M. Haiml, R. Paschotta, G. J. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B80, 151–158 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited