OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 15 — Jul. 29, 2013
  • pp: 17814–17823

Dramatic size reduction of waveguide bends on a micron-scale silicon photonic platform

Matteo Cherchi, Sami Ylinen, Mikko Harjanne, Markku Kapulainen, and Timo Aalto  »View Author Affiliations


Optics Express, Vol. 21, Issue 15, pp. 17814-17823 (2013)
http://dx.doi.org/10.1364/OE.21.017814


View Full Text Article

Enhanced HTML    Acrobat PDF (1631 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate theoretically and experimentally how highly multimodal high index contrast waveguides with micron-scale cores can be bent, on an ultra-broad band of operation, with bending radii below 10 µm and losses for the fundamental mode below 0.02 dB/90°. The bends have been designed based on the Euler spiral and fabricated on 4 µm thick SOI. The proposed approach enabled also the realization of 180° bends with 1.27 µm effective radii and 0.09 dB loss, which are the smallest low-loss bends ever reported for an optical waveguide. These results pave the way for unprecedented integration density in most semiconductor platforms.

© 2013 OSA

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(230.7370) Optical devices : Waveguides
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Integrated Optics

History
Original Manuscript: May 8, 2013
Revised Manuscript: June 28, 2013
Manuscript Accepted: July 13, 2013
Published: July 18, 2013

Citation
Matteo Cherchi, Sami Ylinen, Mikko Harjanne, Markku Kapulainen, and Timo Aalto, "Dramatic size reduction of waveguide bends on a micron-scale silicon photonic platform," Opt. Express 21, 17814-17823 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-15-17814


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Vlasov and S. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express12(8), 1622–1631 (2004). [CrossRef] [PubMed]
  2. S. Musa, A. Borreman, A. A. M. Kok, M. B. J. Diemeer, and A. Driessen, “Experimental Study of Bent Multimode Optical Waveguides,” Appl. Opt.43(30), 5705–5707 (2004). [CrossRef] [PubMed]
  3. E. Dulkeith, F. Xia, L. Schares, W. M. J. Green, and Y. A. Vlasov, “Group index and group velocity dispersion in silicon-on-insulator photonic wires,” Opt. Express14(9), 3853–3863 (2006). [CrossRef] [PubMed]
  4. T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007). [CrossRef]
  5. W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Low-loss, low-cross-talk crossings for silicon-on-insulator nanophotonic waveguides,” Opt. Lett.32(19), 2801–2803 (2007). [CrossRef] [PubMed]
  6. M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics4(8), 492–494 (2010). [CrossRef]
  7. P. Dong, W. Qian, H. Liang, R. Shafiiha, N.-N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express18(10), 9852–9858 (2010). [CrossRef] [PubMed]
  8. B. Ben Bakir, A. Vazquez de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J. M. Fedeli, “Low-Loss (<1 dB) and Polarization-Insensitive Edge Fiber Couplers Fabricated on 200-mm Silicon-on-Insulator Wafers,” IEEE Photon. Technol. Lett.22(11), 739–741 (2010).
  9. K. Solehmainen, T. Aalto, J. Dekker, M. Kapulainen, M. Harjanne, and P. Heimala, “Development of multi-step processing in silicon-on-insulator for optical waveguide applications,” J. Opt. A, Pure Appl. Opt.8(7), S455–S460 (2006). [CrossRef]
  10. R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib wave-guides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron.27(8), 1971–1974 (1991). [CrossRef]
  11. S. P. Pogossian, L. Vescan, and A. Vonsovici, “The single-mode condition for semiconductor rib waveguides with large cross-section,” J. Lightwave Technol.16(10), 1851–1853 (1998). [CrossRef]
  12. E. A. J. Marcatili, “Bends in optical dielectric guides,” Bell Syst. Tech. J.48, 2103–2132 (1969).
  13. Y. Z. Tang, W. H. Wang, T. Li, and Y. L. Wang, “Integrated waveguide turning mirror in silicon-on-insulator,” IEEE Photon. Technol. Lett.14(1), 68–70 (2002). [CrossRef]
  14. T. Aalto, K. Solehmainen, M. Harjanne, M. Kapulainen, and P. Heimala, “Low-Loss Converters Between Optical Silicon Waveguides of Different Sizes and Types,” IEEE Photon. Technol. Lett.18(5), 709–711 (2006). [CrossRef]
  15. W. Yuan, C. S. Seibert, and D. C. Hall, “Single-Facet Teardrop Laser With Matched-Bends Design,” IEEE J. Sel. Top. Quantum Electron.17(6), 1662–1669 (2011). [CrossRef]
  16. W. Yuan and D. C. Hall, “A General Scaling Rule for Matched Bend Waveguides,” J. Lightwave Technol.29(24), 3786–3796 (2011). [CrossRef]
  17. A. Melloni, P. Monguzzi, R. Costa, and M. Martinelli, “Design of curved waveguides: the matched bend,” J. Opt. Soc. Am. A20(1), 130–137 (2003). [CrossRef] [PubMed]
  18. C. Koos, C. G. Poulton, L. Zimmermann, L. Jacome, J. Leuthold, and W. Freude, “Ideal Bend Contour Trajectories for Single-Mode Operation of Low-Loss Overmoded Waveguides,” IEEE Photon. Technol. Lett.19(11), 819–821 (2007). [CrossRef]
  19. R. Baets and P. E. Lagasse, “Loss calculation and design of arbitrarily curved integrated-optic waveguides,” J. Opt. Soc. Am.73(2), 177–182 (1983). [CrossRef]
  20. T. Chen, H. Lee, J. Li, and K. J. Vahala, “A general design algorithm for low optical loss adiabatic connections in waveguides,” Opt. Express20(20), 22819–22829 (2012). [CrossRef] [PubMed]
  21. Z. Hu and Y. Y. Lu, “Computing Optimal Waveguide Bends With Constant Width,” J. Lightwave Technol.25(10), 3161–3167 (2007). [CrossRef]
  22. R. N. Sheehan, S. Horne, and F. H. Peters, “The design of low-loss curved waveguides,” Opt. Quantum Electron.40(14-15), 1211–1218 (2008). [CrossRef]
  23. M. Harjanne and T. Aalto, “Design of tight bends in silicon-on-insulator ridge waveguides,” Phys. Scr. T114, 209–212 (2004). [CrossRef]
  24. A. Melloni, F. Carniel, R. Costa, and M. Martinelli, “Determination of bend mode characteristics in dielectric waveguides,” J. Lightwave Technol.19(4), 571–577 (2001). [CrossRef]
  25. D. Lenz, D. Erni, and W. Bächtold, “Quasi-analytic formalism for mode characteristics in highly overmoded rectangular dielectric waveguide bends,” J. Opt. Soc. Am. A22(9), 1968–1975 (2005). [CrossRef] [PubMed]
  26. D. S. Meek and D. J. Walton, “Clothoid spline transition spirals,” Math. Comput.59(199), 117–133 (1992). [CrossRef]
  27. N. J. Garber and L. A. Hoel, Traffic and Highway Engineering Ch. 15 (Cengage Learning, Toronto, 2009).
  28. M. Kohtoku, T. Kominato, Y. Nasu, and T. Shibata, “New Waveguide Fabrication Techniques for Next-generation PLCs,” NTT Tech. Rev.3, 37–41 (2005).
  29. G. Li, J. Yao, H. Thacker, A. Mekis, X. Zheng, I. Shubin, Y. Luo, J.-H. Lee, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultralow-loss, high-density SOI optical waveguide routing for macrochip interconnects,” Opt. Express20(11), 12035–12039 (2012). [CrossRef] [PubMed]
  30. H. G. Unger, “Normal Mode Bends for Circular Electric Waves,” Bell Syst. Tech. J.36, 1292–1307 (1957).
  31. M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables Ch. 7 (Dover, New York, 1965).
  32. F. Gao, S. Ylinen, M. Kainlauri, and M. Kapulainen, “A Modified Bosch Process For Smooth Sidewall Etching,” in Proceedings of the 22nd Micromechanics and Microsystems Technology Europe Workshop, (Vestfold University College, Norway, 2001, ISBN 978–82–7860–224–9), 69–72.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited