OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 15 — Jul. 29, 2013
  • pp: 17849–17862

Retrieval of effective complex refractive index from intensive measurements of characteristics of ambient aerosols in the boundary layer

Xiaolin Zhang, Yinbo Huang, Ruizhong Rao, and Zhien Wang  »View Author Affiliations

Optics Express, Vol. 21, Issue 15, pp. 17849-17862 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1265 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Aerosol complex refractive index (ACRI) has attracted intensive attentions due to its significance in modeling aerosol radiative effects. Determinations of ACRI from surface measurements of aerosol scattering and absorption coefficients as well as number size distributions during June, 2008 based on an iterative Mie algorithm were performed. The aim of our study was to introduce an inversion approach with the merits of high time-resolutions to retrieve the optically effective ACRI, especially its imaginary part. Based on simultaneous measurements of aerosol characteristics, mean ACRI value of 1.50 ( ± 0.34)–i0.025 ( ± 0.015) at 550 nm in Hefei in summer was deducted. The lower imaginary parts with higher single scattering albedos and lower scattering Angstrom exponents were obtained for haze periods compared with nonhaze conditions with similar air-mass back-trajectories, indicating more large and scattering particles contributing to the formation of haze episodes. The derived imaginary parts of ACRI related to agricultural biomass burning were in the range from 0.013 to 0.029 at 550 nm. Significant negative correlations between retrieved imaginary parts of ACRI and measured single scattering albedos indicate that our retrieval approach is a reasonable method for determining the imaginary parts of complex refractive indices of aerosol particles.

© 2013 OSA

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.1110) Atmospheric and oceanic optics : Aerosols
(160.4760) Materials : Optical properties

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: May 28, 2013
Revised Manuscript: July 3, 2013
Manuscript Accepted: July 5, 2013
Published: July 18, 2013

Xiaolin Zhang, Yinbo Huang, Ruizhong Rao, and Zhien Wang, "Retrieval of effective complex refractive index from intensive measurements of characteristics of ambient aerosols in the boundary layer," Opt. Express 21, 17849-17862 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. A. Ligon, A. E. Wetmore, and P. S. Gillespie, “Simulation of the passive infrared spectral signatures of bioaerosol and natural fog clouds immersed in the background atmosphere,” Opt. Express10(18), 909–919 (2002). [CrossRef] [PubMed]
  2. V. Sivaprakasam, H. B. Lin, A. L. Huston, and J. D. Eversole, “Spectral characterization of biological aerosol particles using two-wavelength excited laser-induced fluorescence and elastic scattering measurements,” Opt. Express19(7), 6191–6208 (2011). [CrossRef] [PubMed]
  3. World Health Organization (WHO), Health Aspects of Air Pollution-Results from the WHO Project, “Systematic Review of Health Aspects of Air Pollution in Europe,” Report Nr. E83080, p. 30. (2004).
  4. Intergovernmental Panel on Climate Change (IPCC), Climate Change 2007: The Physical Science Basis. Cambridge University Press, UK (2007).
  5. J. M. Haywood and K. P. Shine, “Multi-spectral calculations of the direct radiative forcing of tropospheric sulphate and soot aerosols using a column model,” Quarterly Journal of the Royal Meteorological Society—Part A123(543), 1907–1930 (1997). [CrossRef]
  6. M. I. Mishchenko and I. V. Geogdzhayev, “Satellite remote sensing reveals regional tropospheric aerosol trends,” Opt. Express15(12), 7423–7438 (2007). [CrossRef] [PubMed]
  7. Y. J. Kaufman, I. Koren, L. A. Remer, D. Rosenfeld, and Y. Rudich, “The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean,” Proc. Natl. Acad. Sci. U.S.A.102(32), 11207–11212 (2005). [CrossRef] [PubMed]
  8. J. C. Raut and P. Chazette, “Radiative budget in the presence of multi-layered aerosol,” Atmos. Chem. Phys.8(22), 6839–6864 (2008). [CrossRef]
  9. H. Liao and J. H. Seinfeld, “Radiative forcing by mineral dust aerosols: sensitivity to key variables,” J. Geophys. Res.103(D24), 31637–31645 (1998). [CrossRef]
  10. P. Chazette and C. Liousse, “A case study of optical and chemical apportionment for urban aerosols in Thessaloniki,” Atmos. Environ.35(14), 2497–2506 (2001). [CrossRef]
  11. K. Kandler, L. Schutz, C. Deutscher, M. Ebert, H. Hofmann, S. Jackel, R. Jaenicke, P. Knippertz, K. Lieke, A. Massling, A. Petzold, A. Schladitz, B. Weinzierl, A. Wiedensohler, S. Zorn, and S. Weinbruch, “Size distribution, mass concentration, chemical and mineralogical composition and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006,” Tellus B Chem. Phys. Meterol.61(1), 32–50 (2009). [CrossRef]
  12. N. A. Marley, J. S. Gaffney, J. C. Baird, C. A. Blazer, P. J. Drayton, and J. E. Frederick, “An empirical method for the determination of the complex refractive index of size-fractionated atmospheric aerosols for radiative transfer calculations,” Aerosol Sci. Technol.34, 535–549 (2001).
  13. J. Redemann, R. P. Turco, K. N. Liou, P. B. Russell, R. W. Bergstrom, B. Schmid, J. M. Livingston, P. V. Hobbs, W. S. Hartley, S. Ismail, R. A. Ferrare, and E. V. Browell, “Retrieving the vertical structure of the effective aerosol complex index of refraction from a combination of aerosol in situ and remote sensing measurements during TARFOX,” J. Geophys. Res.105(D8), 9949–9970 (2000). [CrossRef]
  14. P. Guyon, O. Boucher, B. Graham, J. Beck, O. L. Mayol-Bracero, G. C. Roberts, W. Maenhaut, P. Artaxo, and M. O. Andreae, “Refractive index of aerosol particles over the Amazon tropical forest during LBA-EUSTACH 1999,” J. Aerosol Sci.34(7), 883–907 (2003). [CrossRef]
  15. A. Petzold, K. Rasp, B. Weinzierl, M. Esselborn, T. Hamburger, A. Dornbrack, K. Kandler, L. Schutz, P. Knippertz, M. Fiebig, and A. Virkkula, “Saharan dust absorption and refractive index from aircraft-based observations during SAMUM 2006,” Tellus B Chem. Phys. Meterol.61(1), 118–130 (2009). [CrossRef]
  16. O. Dubovik, B. N. Holben, T. Lapyonok, A. Sinyuk, M. I. Mishchenko, P. Yang, and I. Slutsker, “Non-spherical aerosol retrieval method employing light scattering by spheroids,” Geophys. Res. Lett.29(10), 1415 (2002). [CrossRef]
  17. O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J. F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res.111(D11), D11208 (2006). [CrossRef]
  18. T. Müller, A. Schladitz, A. Massling, N. Kaaden, K. Kandler, and A. Wiedensohler, “Spectral absorption coefficients and imaginary parts of refractive indices of Saharan dust during SAMUM-1,” Tellus B Chem. Phys. Meterol.61(1), 79–95 (2009). [CrossRef]
  19. J. C. Raut and P. Chazette, “Vertical profiles of urban aerosol complex refractive index in the frame of ESQUIF airborne measurements,” Atmos. Chem. Phys.8(4), 901–919 (2008). [CrossRef]
  20. A. A. Riziq, C. Erlick, E. Dinar, and Y. Rudich, “Optical properties of absorbing and non-absorbing aerosols retrieved by cavity ring down (CRD) spectroscopy,” Atmos. Chem. Phys.7(6), 1523–1536 (2007). [CrossRef]
  21. G. Schkolnik, D. Chand, A. Hoffer, M. O. Andreae, C. Erlick, E. Swietlicki, and Y. Rudich, “Constraining the density and complex refractive index of elemental and organic carbon in biomass burning aerosol using optical and chemical measurements,” Atmos. Environ.41(5), 1107–1118 (2007). [CrossRef]
  22. L. A. Mack, E. J. T. Levin, S. M. Kreidenweis, D. Obrist, H. Moosmuller, K. A. Lewis, W. P. Arnott, G. R. McMeeking, A. P. Sullivan, C. E. Wold, W. M. Hao, J. L. Collett, and W. C. Malm, “Optical closure experiments for biomass smoke aerosols,” Atmos. Chem. Phys.10(18), 9017–9026 (2010). [CrossRef]
  23. M. Stock, Y. F. Cheng, W. Birmili, A. Massling, B. Wehner, T. Muller, S. Leinert, N. Kalivitis, N. Mihalopoulos, and A. Wiedensohler, “Hygroscopic properties of atmospheric aerosol particles over the Eastern Mediterranean: implications for regional direct radiative forcing under clean and polluted conditions,” Atmos. Chem. Phys.11(9), 4251–4271 (2011). [CrossRef]
  24. D. Müller, B. Weinzierl, A. Petzold, K. Kandler, A. Ansmann, T. Muller, M. Tesche, V. Freudenthaler, M. Esselborn, B. Heese, D. Althausen, A. Schladitz, S. Otto, and P. Knippertz, “Mineral dust observed with AERONET Sun photometer, Raman lidar, and in situ instruments during SAMUM 2006: Shape-independent particle properties,” J. Geophys. Res.115(D7), D07202 (2010). [CrossRef]
  25. J. L. Hand and S. M. Kreidenweis, “A new method for retrieving particle refractive index and effective density from aerosol size distribution data,” Aerosol Sci. Technol.36(10), 1012–1026 (2002). [CrossRef]
  26. T. M. Peters and D. Leith, “Concentration measurement and counting efficiency of the aerodynamic particle sizer 3321,” J. Aerosol Sci.34(5), 627–634 (2003). [CrossRef]
  27. J. Shi, R. M. Harrison, and D. Evans, “Comparison of ambient particle surface area measurement by epiphaniometer and SMPS/APS,” Atmos. Environ.35(35), 6193–6200 (2001). [CrossRef]
  28. S. Shen, P. A. Jaques, Y. Zhu, M. D. Geller, and C. Sioutas, “Evaluation of the SMPS–APS system as a continuous monitor for measuring PM2.5, PM10 and coarse (PM2.5−10) concentrations,” Atmos. Environ.36(24), 3939–3950 (2002). [CrossRef]
  29. T. L. Anderson and J. A. Ogren, “Determining aerosol radiative properties using the TSI 3563 integrating nephelometer,” Aerosol Sci. Technol.29(1), 57–69 (1998). [CrossRef]
  30. H. Randriamiarisoa, P. Chazette, P. Couvert, J. Sanak, and G. Megie, “Relative humidity impact on aerosol parameters in a Paris suburban area,” Atmos. Chem. Phys.6(5), 1389–1407 (2006). [CrossRef]
  31. X. Zhang, Y. Huang, and R. Rao, “Aerosol characteristics including fumigation effect under weak precipitation over the southeastern coast of China,” J. Atmos. Sol-Terr. Phy.84–85, 25–36 (2012).
  32. M. Ebert, S. Weinbruch, P. Hoffmann, and H. M. Ortner, “The chemical composition and complex refractive index of rural and urban influenced aerosols determined by individual particle analysis,” Atmos. Environ.38(38), 6531–6545 (2004). [CrossRef]
  33. D. Müller, A. Ansmann, F. Wagner, K. Franke, and D. Althausen, “European pollution outbreaks during ACE 2: Microphysical particle properties and single-scattering albedo inferred from multiwavelength lidar observations,” J. Geophys. Res.107(D15), 4248 (2002). [CrossRef]
  34. O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, and I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci.59(3), 590–608 (2002). [CrossRef]
  35. J. Volckens and T. M. Peters, “Counting and particle transmission efficiency of the aerodynamic particle sizer,” J. Aerosol Sci.36(12), 1400–1408 (2005). [CrossRef]
  36. G. W. Mulholland, N. P. Bryner, and C. Croarkin, “Measurement of the 100 nm NIST SRM 1963 by Differential Mobility Analysis,” Aerosol Sci. Technol.31(1), 39–55 (1999). [CrossRef]
  37. G. W. Mulholland, M. K. Donnelly, C. R. Hagwood, S. R. Kukuck, V. A. Hackley, and D. Y. H. Pui, “Measurement of 100 nm and 60 nm particle standards by Differential Mobility Analysis,” J. Res. Natl. Inst. Stand. Technol.111(4), 257–312 (2006). [CrossRef]
  38. C. E. Corrigan, V. Ramanathan, and J. J. Schauer, “Impact of monsoon transition on the physical and optical properties of aerosols,” J. Geophys. Res.111(D18), D18208 (2006). [CrossRef]
  39. K. K. Moorthy, S. S. Babu, and S. K. Satheesh, “Temporal heterogeneity in aerosol characteristics and the resulting radiative impact at a tropical coastal station—Part 1: Microphysical and optical properties,” Ann. Geophys.25(11), 2293–2308 (2007). [CrossRef]
  40. M. J. Jacobson, “A physically-based treatment of elemental carbon optics: implications for global direct forcing of aerosols,” Geophys. Res. Lett.27(2), 217–220 (2000). [CrossRef]
  41. I. Veselovskii, O. Dubovik, A. Kolgotin, T. Lapyonok, P. Di Girolamo, D. Summa, D. N. Whiteman, M. Mishchenko, and D. Tanre, “Application of randomly oriented spheroids for retrieval of dust particle parameters from multi-wavelength lidar measurements,” J. Geophys. Res.115(D21), D21203 (2010). [CrossRef]
  42. A. Papayannis, R. E. Mamouri, V. Amiridis, E. Remoundaki, G. Tsaknakis, P. Kokkalis, I. Veselovskii, A. Kolgotin, A. Nenes, and C. Fountoukis, “Optical-microphysical properties of Saharan dust aerosols and composition relationship using a multi-wavelength Raman lidar, in situ sensors and modelling: a case study analysis,” Atmos. Chem. Phys.12(9), 4011–4032 (2012). [CrossRef]
  43. A. Virkkula, I. K. Koponen, K. Teinila, R. Hillamo, V. M. Kerminen, and M. Kulmala, “Effective real refractive index of dry aerosols in the Antarctic boundary layer,” Geophys. Res. Lett.33(6), L06805 (2006). [CrossRef]
  44. M. Schnaiter, H. Horvath, O. Mohler, K. H. Naumann, H. Saathoff, and O. W. Schock, “UV-VIS-NIR spectral optical properties of soot and soot-containing aerosols,” J. Aerosol Sci.34(10), 1421–1444 (2003). [CrossRef]
  45. X. Zhang, Y. Huang, W. Zhu, and R. Rao, “Aerosol characteristics during summer haze episodes from different source regions over the coast city of North China Plain,” J. Quant. Spectrosc. Radiat. Transf.122, 180–193 (2013). [CrossRef]
  46. Z. Z. Deng, C. S. Zhao, N. Ma, P. F. Liu, L. Ran, W. Y. Xu, J. Chen, Z. Liang, S. Liang, M. Y. Huang, X. C. Ma, Q. Zhang, J. N. Quan, P. Yan, S. Henning, K. Mildenberger, E. Sommerhage, M. Schafer, F. Stratmann, and A. Wiedensohler, “Size-resolved and bulk activation properties of aerosols in the North China plain,” Atmos. Chem. Phys.11(8), 3835–3846 (2011). [CrossRef]
  47. Y. M. Noh, D. Muller, D. H. Shin, H. L. Lee, J. S. Jung, K. H. Lee, M. Cribb, Z. Li, and Y. J. Kim, “Optical and microphysical properties of severe haze and smoke aerosol measured by integrated remote sensing techniques in Gwangju, Korea,” Atmos. Environ.43(4), 879–888 (2009). [CrossRef]
  48. Y. M. Noh, D. Muller, I. Mattis, H. Lee, and Y. J. Kim, “Vertically resolved light-absorption characteristics and the influence of relative humidity on particle properties: Multiwavelength Raman lidar observations of East Asian aerosol types over Korea,” J. Geophys. Res.116(D6), D06206 (2011). [CrossRef]
  49. C. Li, L. T. Marufu, R. R. Dickerson, Z. Li, T. Wen, Y. Wang, P. Wang, H. Chen, and J. W. Stehr, “In situ measurements of trace gases and aerosol optical properties at a rural site in northern China during East Asian Study of Tropospheric Aerosols: An International Regional Experiment 2005,” J. Geophys. Res.112(D22), D22S04 (2007). [CrossRef]
  50. J. M. Haywood, S. R. Osborne, P. N. Francis, A. Keil, P. Formenti, M. O. Andreae, and P. H. Kaye, “The mean physical and optical properties of regional haze dominated by biomass burning aerosol measured from the C-130 aircraft during SAFARI 2000,” J. Geophys. Res.108, (2003). [CrossRef]
  51. J. C. Raut and P. Chazette, “Retrieval of aerosol complex refractive index from a synergy between lidar, sunphotometer and in situ measurements during LISAIR experiment,” Atmos. Chem. Phys.7(11), 2797–2815 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited