OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 15 — Jul. 29, 2013
  • pp: 17920–17930

Relative optical wavefront measurement in displacement measuring interferometer systems with sub-nm precision

Arjan J. H. Meskers, Dirk Voigt, and Jo W. Spronck  »View Author Affiliations


Optics Express, Vol. 21, Issue 15, pp. 17920-17930 (2013)
http://dx.doi.org/10.1364/OE.21.017920


View Full Text Article

Enhanced HTML    Acrobat PDF (3470 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Many error sources can affect the accuracy of displacement measuring interferometer systems. In heterodyne interferometry two laser source frequencies constitute the finally detected wavefront. When the wavefronts of these source frequencies are non-ideal and one of them walks off the detector, the shape of the detected wavefront will vary. This leads to a change in measured phase at the detector resulting in increased measurement uncertainty. A new wavefront measurement tool described in this publication measures the relative phase difference between the two wavefronts of the two source frequencies of a coaxial heterodyne laser source as used in commercial heterodyne interferometer systems. The proposed measurement method uses standard commercial optics and operates with the same phase measurement equipment that is normally used for heterodyne displacement interferometry. In the presented method a bare tip of a multimode fiber represents the receiving detection aperture and is used for locally sampling the wavefront during a line scan. The difference in phase between the beating frequency of the scanning fiber and a reference beating frequency that results from integration over the entire beam, is used for the reconstruction of the wavefront. The method shows to have a phase resolution in the order of ~25 pm or ~λ/25000 for λ 632.8 nm, and a spatial resolution of ~60 µm at a repeatability better than 1 nm over one week.

© 2013 OSA

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.3930) Instrumentation, measurement, and metrology : Metrological instrumentation
(120.4570) Instrumentation, measurement, and metrology : Optical design of instruments
(120.4630) Instrumentation, measurement, and metrology : Optical inspection
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(120.4820) Instrumentation, measurement, and metrology : Optical systems
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(060.2840) Fiber optics and optical communications : Heterodyne

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: March 11, 2013
Revised Manuscript: May 17, 2013
Manuscript Accepted: May 28, 2013
Published: July 19, 2013

Citation
Arjan J. H. Meskers, Dirk Voigt, and Jo W. Spronck, "Relative optical wavefront measurement in displacement measuring interferometer systems with sub-nm precision," Opt. Express 21, 17920-17930 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-15-17920


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Bobroff, “Recent advances in displacement measuring interferometry,” Meas. Sci. Technol.4(9), 907–926 (1993). [CrossRef]
  2. F. C. Demarest, “High-resolution, high-speed, low data age uncertainty, heterodyne displacement measuring interferometer electronics,” Meas. Sci. Technol.9(7), 1024 (1998). [CrossRef]
  3. A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: The Laser Interferometer Gravitational-Wave Observatory,” Science256(5055), 325–333 (1992). [CrossRef] [PubMed]
  4. K. Danzmann and L. I. S. A. team, “LISA: laser interferometer space antenna for gravitational wave measurements,” Class. Quantum Gravity13(11A), A247–A250 (1996). [CrossRef]
  5. T. Schuldt, M. Gohlke, D. Weise, U. Johann, A. Peters, and C. Braxmaier, “Picometer and nanoradian optical heterodyne interferometry for translation and tilt metrology of the LISA gravitational reference sensor,” Class. Quantum Gravity26(8), 085008 (2009). [CrossRef]
  6. H.-J. Butt, B. Cappella, and M. Kappl, “Force measurements with the atomic force microscope: Technique, interpretation and applications,” Surf. Sci. Rep.59(1-6), 1–152 (2005). [CrossRef]
  7. J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial, “Measuring the Orbital Angular Momentum of a Single Photon,” Phys. Rev. Lett.88(25), 257901 (2002). [CrossRef] [PubMed]
  8. P. de Groot, J. Biegen, J. Clark, X. C. de Lega, and D. Grigg, “Optical interferometry for measurement of the geometric dimensions of industrial parts,” Appl. Opt.41(19), 3853–3860 (2002). [CrossRef] [PubMed]
  9. S. J. A. G. Cosijns, H. Haitjema, and P. H. J. Schellekens, “Modeling and verifying non-linearities in heterodyne displacement interferometry,” Precis. Eng.26(4), 448–455 (2002). [CrossRef]
  10. W. Hou and G. Wilkening, “Investigation and compensation of the nonlinearity of heterodyne interferometers,” Precis. Eng.14(2), 91–98 (1992). [CrossRef]
  11. J. M. De Freitas and M. A. Player, “Polarization effects in heterodyne interferometry,” J. Mod. Opt.42(9), 1875–1899 (1995). [CrossRef]
  12. K. N. Joo, J. D. Ellis, E. S. Buice, J. W. Spronck, and R. H. Schmidt, “High resolution heterodyne interferometer without detectable periodic nonlinearity,” Opt. Express18(2), 1159–1165 (2010). [CrossRef] [PubMed]
  13. J. D. Ellis, A. J. H. Meskers, J. W. Spronck, and R. H. Munnig Schmidt, “Fiber-coupled displacement interferometry without periodic nonlinearity,” Opt. Lett.36(18), 3584–3586 (2011). [CrossRef] [PubMed]
  14. G. Mana, “Diffraction Effects in Optical Interferometers Illuminated by Laser Sources,” Metrologia26(2), 87–93 (1989). [CrossRef]
  15. K. Dorenwendt and G. Bönsch, “Über den EinfluB der Beugung auf die interferentielle Längenmessung,” Metrologia12(2), 57–60 (1976). [CrossRef]
  16. A. Chernyshov, U. Sterr, F. Riehle, J. Helmcke, and J. Pfund, “Calibration of a Shack-Hartmann sensor for absolute measurements of wavefronts,” Appl. Opt.44(30), 6419–6425 (2005). [CrossRef] [PubMed]
  17. A. F. Brooks, T. L. Kelly, P. J. Veitch, and J. Munch, “Ultra-sensitive wavefront measurement using a Hartmann sensor,” Opt. Express15(16), 10370–10375 (2007). [CrossRef] [PubMed]
  18. H. Medecki, E. Tejnil, K. A. Goldberg, and J. Bokor, “Phase-shifting point diffraction interferometer,” Opt. Lett.21(19), 1526–1528 (1996). [CrossRef] [PubMed]
  19. G. R. Brady, M. Guizar-Sicairos, and J. R. Fienup, “Optical wavefront measurement using phase retrieval with transverse translation diversity,” Opt. Express17(2), 624–639 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited