OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 15 — Jul. 29, 2013
  • pp: 17941–17950

Ultra-fast transistor-based detectors for precise timing of near infrared and THz signals

S. Preu, M. Mittendorff, S. Winnerl, H. Lu, A. C. Gossard, and H. B. Weber  »View Author Affiliations

Optics Express, Vol. 21, Issue 15, pp. 17941-17950 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2727 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A whole class of two-color experiments involves intense, short Terahertz radiation pulses. A fast and moderately sensitive detector capable to resolve both near-infrared and Terahertz pulses at the same time is highly desirable. Here we present the first detector of this kind. The detector element is a GaAs-based field effect transistor operated at room temperature. THz detection is successfully demonstrated at frequencies up to 4.9 THz. The THz detection time constant is shorter than 30 ps, the optical time constant is 150 ps. This detector is ideally suited for precise, simultaneous resolution of optical and THz pulses and for pulse characterization of high-power THz pulses up to tens of kW peak power levels. The dynamic range of the detector is as large as 65 ± 3 dB / H z, enabling applications in a large variety of experiments and setups, also including table-top systems.

© 2013 OSA

OCIS Codes
(140.2600) Lasers and laser optics : Free-electron lasers (FELs)
(230.0040) Optical devices : Detectors
(230.0250) Optical devices : Optoelectronics
(320.7080) Ultrafast optics : Ultrafast devices
(040.2235) Detectors : Far infrared or terahertz
(140.3295) Lasers and laser optics : Laser beam characterization

ToC Category:

Original Manuscript: March 20, 2013
Revised Manuscript: June 7, 2013
Manuscript Accepted: June 15, 2013
Published: July 19, 2013

S. Preu, M. Mittendorff, S. Winnerl, H. Lu, A. C. Gossard, and H. B. Weber, "Ultra-fast transistor-based detectors for precise timing of near infrared and THz signals," Opt. Express 21, 17941-17950 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Öjefors, N. Baktash, Y. Zhao, R. A. Hadi, H. Sherry, and U. R. Pfeiffer, “Terahertz imaging detectors in a 65-nm CMOS SOI technology,” Proc. ESSCIRC, 486–489 (2010). [CrossRef]
  2. K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, and H. G. Roskos, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett.80, 3003–3005 (2002). [CrossRef]
  3. A. E. Fatimy, J. C. Delagnes, A. Younus, E. Nguema, F. Teppe, W. Knap, E. Abraham, and P. Mounaix, “Plasma wave field effect transistor as a resonant detector for 1 terahertz imaging applications,” Optics Commun.282, 3055–3058 (2009). [CrossRef]
  4. B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mat.1, 26–33 (2002). [CrossRef]
  5. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics1, 97–105 (2007). [CrossRef]
  6. S. Tani, F. Blanchard, and K. Tanaka, “Ultrafast carrier dynamics in graphene under a high electric field,” Phys. Rev. Lett.109, 166603 (2012). [CrossRef] [PubMed]
  7. R. Huber, R. A. Kaindl, D. A. Schmid, and D. S. Chemla, “Broadband terahertz study of excitonic resonances in the high-density regime in GaAs/AlxGa1−xAs quantum wells,” Phys. Rev. B72, 161314 (2005). [CrossRef]
  8. R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, and A. Leitenstorfer, “How many-particle interactions develop after ultrafast excitation of an electron-hole plasma,” Nature414, 286–289 (2001). [CrossRef] [PubMed]
  9. P. A. George, J. Strait, J. Dawlaty, S. Shivaraman, M. Chandashekkar, F. Rana, and M. G. Spencer, “Ultra-fast optica-pump teahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene,” Nano Lett.8, 4248–4251 (2008). [CrossRef]
  10. B. Zaks, R. Liu, and M. Sherwin, “Experimental observation of electron-hole recollisions,” Nature483, 580–583 (2012). [CrossRef] [PubMed]
  11. M. Wagner, H. Schneider, S. Winnerl, M. Helm, T. Roch, A. Andrews, S. Scharter, and G. Strasser, “Resonant enhancement of second order sideband generation for intraexcitonic transitions in GaAs/AlGaAs multiple quantum wells,” Appl. Phys. Lett.94, 241105 (2009). [CrossRef]
  12. M. Zudov, A. P. Mitchell, and A. H. Chin, “Time-resolved, nonperturbative, and off-resonance generation of optical terahertz sidebands from bulk GaAs,” Phys. Rev. B64, 121204 (2001). [CrossRef]
  13. V. Ciulin, S. Carter, M. S. Sherwin, A. Huntington, and L. Coldren, “Terahertz optical mixing in biased GaAs single quantum wells,” Phys. Rev. B70, 115312 (2004). [CrossRef]
  14. M. Wagner, H. Schneider, D. Stehr, S. Winnerl, A. Andrews, S. Schartner, G. Strasser, and M. Helm, “Observation of the intraexciton Autler-Townes effect in GaAs/AlGaAs semiconductor quantum wells,” Phys. Rev. Lett.105, 167401 (2010). [CrossRef]
  15. J. Bhattacharyya, M. Wagner, S. Zybell, S. Winnerl, D. Stehr, M. Helm, and H. Schneider, “Simultaneous time and wavelength resolved spectroscopy under two-colour near infrared and terahertz excitation,” Rev. Sci. Instrum.82, 103107 (2011) [CrossRef] [PubMed]
  16. Q. Li, S.-H. Ding, R. Yao, and Q. Wang, “Real-time terahertz scanning imaging by use of a pyroelectric array camera and image denoising,” J. Opt. Soc. Am. A27, 2381–2386 (2010). [CrossRef]
  17. G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil, and G. P. Williams, “High-power terahertz radiation from relativistic electrons,” Nature420, 153–156 (2002). [CrossRef] [PubMed]
  18. C. Sydlo, O. Cojocari, D. Schönherr, T. Goebel, P. Meissner, and H. L. Hartnagel, “Fast THz detectors based on InGaAs Schottky diodes,” Frequenz62, 107–110 (2008). [CrossRef]
  19. S. Winnerl, “GaAs/AlAs superlattices for detection of terahertz radiation,” Microelectron. J.31, 389–396 (2000). [CrossRef]
  20. S. D. Ganichev, Y. V. Terent’ev, and I. D. Yaroshetskii, “Photon-drag photodetectors for the far-IR and submillimeter regions,” Sov. Tech. Phys. Lett.11, 20 (1985).
  21. S. Preu, H. Lu, M. S. Sherwin, and A. C. Gossard, “Detection of nanosecond-scale, high power THz pulses with a field effect transistor,” Rev. Sci. Instrum.83, 053101 (2012). [CrossRef] [PubMed]
  22. M. Dyakonov and M. Shur, “Shallow water analogy for a ballistic field effect transistor: New mechanism of plasma wave generation by dc current,” Phys. Rev. Lett.71, 2465–2468 (1993). [CrossRef] [PubMed]
  23. H. Marachino, L. Chusseau, J. Torres, P. Nouvel, L. Varani, G. Sabatini, C. Palermo, P. Shiktorov, E. Starikov, and V. Gruzinskis, “Room-temperature terahertz mixer based on the simultaneous electronic and optical excitations of plasma waves in a field effect transistor,” Appl. Phys. Lett.96, 013502 (2010). [CrossRef]
  24. G. Dyer, G. R. Aizin, S. Preu, N. Q. Vinh, S. J. Allen, J. L. Reno, and E. A. Shaner, “Inducing an incipient terahertz finite plasmonic crystal in couped two dimensional plasmonic cavities,” Phys. Rev. Lett.109, 126803 (2012). [CrossRef] [PubMed]
  25. G. R. Aizin and G. C. Dyer, “Transmission line theory of collective plasma excitations in periodic two-dimensional electron systems: Finite plasmonic crystals and Tamm states,” Phys. Rev. B86, 235316 (2012). [CrossRef]
  26. S. Preu, P. G. Burke, M. S. Sherwin, and A. C. Gossard, “An improved theory for non-resonant Thz detection in field effect transistors,” J. Appl. Phys.111, 024502 (2012). [CrossRef]
  27. D. Veksler, F. Teppe, A. P. Dmitriev, V. Y. Kachorovskii, W. Knap, and M. S. Shur, “Detection of Terahertz radiation in gated two-dimensional structures governed by dc current,” Phys. Rev. B73, 125328 (2006). [CrossRef]
  28. A. Lisauskas, S. Boppel, M. Mundt, V. Krozer, and H. G. Roskos, “Subharmonic mixing with field-effect transistors: theory and experiment at 639 GHz high above fτ,” IEEE Sensors J.13, 124–132 (2013). [CrossRef]
  29. J. Torres, H. Marinchio, P. Nouvel, G. Sabatini, C. Palermo, L. Varani, L. Chusseau, P. Shiktorov, E. Starikov, and V. Gruzinskis, “Plasma waves subterahertz optical beating detection and enhancement in long-channel high-electron-mobility transistors: Experiments and modeling,” IEEE J. Sel. Topics Quant. Electron.14, 491–497 (2008). [CrossRef]
  30. T. Kondo and K. Hirakawa, “Terahertz radiation from ultrahigh-speed field-effect transistors induced by ultrafast optical gate switching,” Appl. Phys. Lett.91, 191120 (2007). [CrossRef]
  31. S. Preu, G. H. Döhler, S. Malzer, L. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys.109, 061301 (2011). [CrossRef]
  32. S. Boppel, A. Lisauskas, D. Seliuta, L. Minkevicius, I. Kasalynas, G. Valusis, V. Krozer, and H. G. Roskos, “CMOS integrated antenna-coupled field-effect-transistors for the detection of 0.2 to 4.3 THz,” IEEE Trans. Microw. Theory Techniques60, 3834–3843 (2012). [CrossRef]
  33. V. V. Popov, D. M. Ermolaev, M. V. Maremyanin, N. A. Maleev, V. E. Zemlyakov, V. I. Gavrilenko, and S. Yu. Shapoval, “High-responsivity terahertz detection by on-chip InGaAs/GaAs field-effect-transistor array,” Appl. Phys. Lett.98, 153504 (2011) [CrossRef]
  34. W. Knap, F. Teppe, N. Dyakonova, D. Coquillat, and J. Lusakowski, “Plasma wave oscillations in nanometer field effect transistors for terahertz detection and emission,” J. Phys.:Condens. Mater20, 284205 (2008). [CrossRef]
  35. A. Dreyhaupt, S. Winnerl, M. Helm, and T. Dekorsy, “Optimum excitation conditions for the generation of high-electric-field THz radiation from an oscillator-driven photoconductive device,” Opt. Lett.31, 1546–1548 (2006). [CrossRef] [PubMed]
  36. K.-L. Yeh, J. Hebling, M. C. Hoffmann, and K. A. Nelson, “Generation of high average power 1 kHz shaped THz pulses via optical rectification,” Opt. Commun.281, 3567–3570 (2008). [CrossRef]
  37. M. Beck, H. Schäfer, G. Klatt, J. Demsar, S. Winnerl, M. Helm, and T. Dekorsy, “Impulsive Terahertz radiation with high electric fields from an amplifier-driven large-area photoconductive antenna,” Opt. Express18, 9251–9257 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited