OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 15 — Jul. 29, 2013
  • pp: 17961–17971

Continuous-wave cavity ringdown spectroscopy based on the control of cavity reflection

Zhixin Li, Weiguang Ma, Xiaofang Fu, Wei Tan, Gang Zhao, Lei Dong, Lei Zhang, Wangbao Yin, and Suotang Jia  »View Author Affiliations

Optics Express, Vol. 21, Issue 15, pp. 17961-17971 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1155 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new type of continuous-wave cavity ringdown spectrometer based on the control of cavity reflection for trace gas detection was designed and evaluated. The technique separated the acquisitions of the ringdown event and the trigger signal to optical switch by detecting the cavity reflection and transmission, respectively. A detailed description of the time sequence of the measurement process was presented. In order to avoid the wrong extraction of ringdown time encountered accidentally in fitting procedure, the laser frequency and cavity length were scanned synchronously. Based on the statistical analysis of measured ringdown times, the frequency normalized minimum detectable absorption in the reflection control mode was 1.7 × 10−9cm−1Hz-1/2, which was 5.4 times smaller than that in the transmission control mode. However the signal-to-noise ratio of the absorption spectrum was only 3 times improved since the etalon effect existed. Finally, the peak absorption coefficients of the C2H2 transition near 1530.9nm under different pressures showed a good agreement with the theoretical values.

© 2013 OSA

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(280.3420) Remote sensing and sensors : Laser sensors
(300.0300) Spectroscopy : Spectroscopy
(300.6190) Spectroscopy : Spectrometers
(010.1030) Atmospheric and oceanic optics : Absorption

ToC Category:

Original Manuscript: April 9, 2013
Revised Manuscript: June 1, 2013
Manuscript Accepted: July 11, 2013
Published: July 19, 2013

Zhixin Li, Weiguang Ma, Xiaofang Fu, Wei Tan, Gang Zhao, Lei Dong, Lei Zhang, Wangbao Yin, and Suotang Jia, "Continuous-wave cavity ringdown spectroscopy based on the control of cavity reflection," Opt. Express 21, 17961-17971 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Macko, D. Romanini, S. N. Mikhailenko, O. V. Naumenko, S. Kassi, A. Jenouvrier, V. G. Tyuterev, and A. Campargue, “High sensitivity CW-cavity ring down spectroscopy of water in the region of the 1.5μm atmospheric window,” J. Mol. Spectrosc.227(1), 90–108 (2004). [CrossRef]
  2. S. Kassi, D. Romanini, A. Campargue, and B. Bussery-Honvault, “Very high sensitivity CW-cavity ring down spectroscopy: Application to the a1Δg(0)-X3 Σg-(1) O2 band near 1.58 μm,” Chem. Phys. Lett.409(4–6), 281–287 (2005). [CrossRef]
  3. P. B. Tarsa, A. D. Wist, P. Rabinowitz, and K. K. Lehmann, “Single-cell detection by cavity ring-down spectroscopy,” Appl. Phys. Lett.85(19), 4523–4525 (2004). [CrossRef]
  4. R. Provencal, M. Gupta, T. G. Owano, D. S. Baer, K. N. Ricci, A. O’Keefe, and J. R. Podolske, “Cavity-enhanced quantum-cascade laser-based instrument for carbon monoxide measurements,” Appl. Opt.44(31), 6712–6717 (2005). [CrossRef] [PubMed]
  5. J. M. Langridge, S. M. Ball, and R. L. Jones, “A compact broadband cavity enhanced absorption spectrometer for detection of atmospheric NO2 using light emitting diodes,” Analyst (Lond.)131(8), 916–922 (2006). [CrossRef]
  6. J. M. Herbelin, J. A. McKay, M. A. Kwok, R. H. Ueunten, D. S. Urevig, D. J. Spencer, and D. J. Benard, “Sensitive measurement of photon lifetime and true reflectances in an optical cavity by a phase-shift method,” Appl. Opt.19(1), 144–147 (1980). [CrossRef] [PubMed]
  7. D. Z. Anderson, J. C. Frisch, and C. S. Masser, “Mirror reflectometer based on optical cavity decay time,” Appl. Opt.23(8), 1238–1238 (1984). [CrossRef] [PubMed]
  8. A. O'Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum.59(12), 2544–2554 (1988). [CrossRef]
  9. D. Romanini and K. K. Lehmann, “Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with six, seven, and eight stretching quanta,” J. Chem. Phys.99(9), 6287–6301 (1993). [CrossRef]
  10. P. Zalicki and R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys.102(7), 2708–2717 (1995). [CrossRef]
  11. J. J. Scherer, D. Voelkel, D. J. Rakestraw, J. B. Paul, C. P. Collier, R. J. Saykally, and A. O’Keefe, “Infrared Cavity Ringdown Laser Absorption Spectroscopy (IR-CRLAS),” Chem. Phys. Lett.245(2-3), 273–280 (1995). [CrossRef]
  12. D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett.264(3-4), 316–322 (1997). [CrossRef]
  13. D. Romanini, A. A. Kachanov, and F. Stoeckel, “Diode laser cavity ring down spectroscopy,” Chem. Phys. Lett.270(5-6), 538–545 (1997). [CrossRef]
  14. G. Totschnig, D. S. Baer, J. Wang, F. Winter, H. Hofbauer, and R. K. Hanson, “Multiplexed continuous-wave diode-laser cavity ringdown measurements of multiple species,” Appl. Opt.39(12), 2009–2016 (2000). [CrossRef] [PubMed]
  15. A. R. Awtry and J. H. Miller, “Development of a cw-laser-based cavity-ringdown sensor aboard a spacecraft for trace air constituents,” Appl. Phys. B75(2-3), 255–260 (2002). [CrossRef] [PubMed]
  16. T. K. Boyson, T. G. Spence, M. E. Calzada, and C. C. Harb, “Frequency domain analysis for laser-locked cavity ringdown spectroscopy,” Opt. Express19(9), 8092–8101 (2011). [CrossRef] [PubMed]
  17. J. B. Dudek, P. B. Tarsa, A. Velasquez, M. Wladyslawski, P. Rabinowitz, and K. K. Lehmann, “Trace moisture detection using continuous-wave cavity ring-down spectroscopy,” Anal. Chem.75(17), 4599–4605 (2003). [CrossRef] [PubMed]
  18. A. A. Kosterev, A. L. Malinovsky, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Cavity ringdown spectroscopic detection of nitric oxide with a continuous-wave quantum-cascade laser,” Appl. Opt.40(30), 5522–5529 (2001). [CrossRef] [PubMed]
  19. J. T. Hodges, H. P. Layer, W. W. Miller, and G. E. Scace, “Frequency-stabilized single-mode cavity ring-down apparatus for high-resolution absorption spectroscopy,” Rev. Sci. Instrum.75(4), 849–863 (2004). [CrossRef]
  20. D. A. Long, D. J. Robichaud, and J. T. Hodges, “Frequency-stabilized cavity ring-down spectroscopy measurements of line mixing and collision-induced absorption in the O2 A-band,” J. Chem. Phys.137(1), 014307 (2012). [CrossRef] [PubMed]
  21. Y. He and B. J. Orr, “Rapidly swept, continuous-wave cavity ringdown spectroscopy with optical heterodyne detection: single- and multi-wavelength sensing of gases,” Appl. Phys. B75(2–3), 267–280 (2002). [CrossRef]
  22. I. Debecker, A. K. Mohamed, and D. Romanini, “High-speed cavity ringdown spectroscopy with increased spectral resolution by simultaneous laser and cavity tuning,” Opt. Express13(8), 2906–2915 (2005). [CrossRef] [PubMed]
  23. M. J. Lawrence, B. Willke, M. E. Husman, E. K. Gustafson, and R. L. Byer, “Dynamic response of a Fabry-Perot interferometer,” J. Opt. Soc. Am. B16(4), 523–532 (1999). [CrossRef]
  24. “HITRAN 2008 Database (Version 12.0).”

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited