OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 15 — Jul. 29, 2013
  • pp: 18043–18052

Optical absorption characteristics of nanometer and submicron a-Si:H solar cells with two kinds of nano textures

Xie Ziang, Wang Wei, Qin Laixiang, Xu Wanjin, and G. G. Qin  »View Author Affiliations


Optics Express, Vol. 21, Issue 15, pp. 18043-18052 (2013)
http://dx.doi.org/10.1364/OE.21.018043


View Full Text Article

Enhanced HTML    Acrobat PDF (1280 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The optical absorption properties of a-Si:H have acquired much attention in solar cell(SC) research. In this paper, we studied enhancement of light absorption in the a-Si:H(10%H) SCs with thicknesses from 31.25nm to 2μm and with nano textures of the column-shaped nanohole (CLNH) array and of the cone-shaped nanohole (CNNH) array, via the Finite Difference Time Domain (FDTD) simulation. For a given type of nano texture and film thickness, d, the ultimate efficiency, the ideal efficiency without considering carrier combinations, is optimized over array period, p, and filling fraction, f, and is defined as the optimized ultimate efficiency, η0. The simulation results demonstrated that: even for the CLNH textured a-Si:H(10%H) SCs as thin as 62.5 nm,η0 is 19.7%. When the a-Si:H(10%H) SC is thinner than a critical depth of about 250nm, the CLNH texture is more efficient than the CNNH texture, and vice versa. When the thicknesses of SCs are very thin, especially smaller than 100nm, the efficiencies of the a-Si:H(10%H) SCs are evidently higher than those of the c-Si SCs. For example, in the CLNH arrays, when d = 62.5nm, η0for the a-Si:H(10%H) SCs is higher than the c-Si SCs by a factor of approximate 2.3.

© 2013 OSA

OCIS Codes
(220.2740) Optical design and fabrication : Geometric optical design
(350.6050) Other areas of optics : Solar energy
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Solar Energy

History
Original Manuscript: May 7, 2013
Revised Manuscript: June 6, 2013
Manuscript Accepted: June 7, 2013
Published: July 19, 2013

Citation
Xie Ziang, Wang Wei, Qin Laixiang, Xu Wanjin, and G. G. Qin, "Optical absorption characteristics of nanometer and submicron a-Si:H solar cells with two kinds of nano textures," Opt. Express 21, 18043-18052 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-15-18043


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Lu and A. Lal, “High-Efficiency Ordered Silicon Nano-Conical-Frustum Array Solar Cells by Self-Powered Parallel Electron Lithography,” Nano Lett.10(11), 4651–4656 (2010). [CrossRef] [PubMed]
  2. W. Wang, J. Zhang, Y. Zhang, Z. Xie, and G. G. Qin, “Optical Absorption Enhancement in Submicron Crystalline Silicon Films with Nanotexturing Arrays for Solar Photovoltaic Applications,” J. Phys. D Appl. Phys.46(19), 195106 (2013). [CrossRef]
  3. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express18(S3Suppl 3), A366–A380 (2010). [CrossRef] [PubMed]
  4. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A.107(41), 17491–17496 (2010). [CrossRef] [PubMed]
  5. L. Hu and G. Chen, “Analysis of Optical Absorption in Silicon Nanowire Arrays for Photovoltaic Applications,” Nano Lett.7(11), 3249–3252 (2007). [CrossRef] [PubMed]
  6. J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science339(6123), 1057–1060 (2013). [CrossRef] [PubMed]
  7. G. Mariani, A. C. Scofield, C.-H. Hung, and D. L. Huffaker, “GaAs nanopillar-array solar cells employing in situ surface passivation,” Nat Commun4, 1497 (2013). [CrossRef] [PubMed]
  8. S. E. Han and G. Chen, “Optical Absorption Enhancement in Silicon Nanohole Arrays for Solar Photovoltaics,” Nano Lett.10(3), 1012–1015 (2010). [CrossRef] [PubMed]
  9. S.-F. Leung, M. Yu, Q. Lin, K. Kwon, K.-L. Ching, L. Gu, K. Yu, and Z. Fan, “Efficient Photon Capturing with Ordered Three-Dimensional Nanowell Arrays,” Nano Lett.12(7), 3682–3689 (2012). [CrossRef] [PubMed]
  10. J. Zhu, Z. F. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Q. Xu, Q. Wang, M. McGehee, S. H. Fan, and Y. Cui, “Optical Absorption Enhancement in Amorphous Silicon Nanowire and Nanocone Arrays,” Nano Lett.9(1), 279–282 (2009). [CrossRef] [PubMed]
  11. Q. G. Du, C. H. Kam, H. V. Demir, H. Y. Yu, and X. W. Sun, “Enhanced optical absorption in nanopatterned silicon thin films with a nano-cone-hole structure for photovoltaic applications,” Opt. Lett.36(9), 1713–1715 (2011). [CrossRef] [PubMed]
  12. S. Kageyama, M. Akagawa, and H. Fujiwara, “Dielectric function of a-Si:H based on local network structures,” Phys. Rev. B83(19), 195205 (2011). [CrossRef]
  13. W. Bai, Q. Gan, F. Bartoli, J. Zhang, L. Cai, Y. Huang, and G. Song, “Design of plasmonic back structures for efficiency enhancement of thin-film amorphous Si solar cells,” Opt. Lett.34(23), 3725–3727 (2009). [CrossRef] [PubMed]
  14. A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner, “Photovoltaic Technology: The Case for Thin-Film Solar Cells,” Science285(5428), 692–698 (1999). [CrossRef] [PubMed]
  15. J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome Solar Cells with Efficient Light Management and Self-Cleaning,” Nano Lett.10(6), 1979–1984 (2010). [CrossRef] [PubMed]
  16. O. Korech, J. M. Gordon, E. A. Katz, D. Feuermann, and N. Eisenberg, “Dielectric microconcentrators for efficiency enhancement in concentrator solar cells,” Opt. Lett.32(19), 2789–2791 (2007). [CrossRef] [PubMed]
  17. T.-H. Chang, P.-H. Wu, S.-H. Chen, C.-H. Chan, C.-C. Lee, C.-C. Chen, and Y.-K. Su, “Efficiency enhancement in GaAs solar cells using self-assembled microspheres,” Opt. Express17(8), 6519–6524 (2009). [CrossRef] [PubMed]
  18. G. Sun, F. Chang, and R. A. Soref, “High efficiency thin-film crystalline Si/Ge tandem solar cell,” Opt. Express18(4), 3746–3753 (2010). [CrossRef] [PubMed]
  19. M. Di Vece, Y. Kuang, S. N. van Duren, J. M. Charry, L. van Dijk, and R. E. I. Schropp, “Plasmonic nano-antenna a-Si:H solar cell,” Opt. Express20(25), 27327–27336 (2012). [CrossRef] [PubMed]
  20. W. Koshibae, N. Furukawa, and N. Nagaosa, “Carrier multiplication and separation in systems with strong electron interaction: Photoinduced dynamics of a junction solar cell,” Phys. Rev. B87(16), 165126 (2013). [CrossRef]
  21. H. J. Xiang, B. Huang, E. Kan, S.-H. Wei, and X. G. Gong, “Towards Direct-Gap Silicon Phases by the Inverse Band Structure Design Approach,” Phys. Rev. Lett.110(11), 118702 (2013). [CrossRef]
  22. A. H. Mahan, J. Carapella, B. P. Nelson, R. S. Crandall, and I. Balberg, “Deposition of device quality, low H content amorphous silicon,” J. Appl. Phys.69(9), 6728 (1991). [CrossRef]
  23. J. N. Munday and H. A. Atwater, “Large Integrated Absorption Enhancement in Plasmonic Solar Cells by Combining Metallic Gratings and Antireflection Coatings,” Nano Lett.11(6), 2195–2201 (2011). [CrossRef] [PubMed]
  24. N. F. Fahim, B. Jia, Z. Shi, and M. Gu, “Simultaneous broadband light trapping and fill factor enhancement in crystalline silicon solar cells induced by Ag nanoparticles and nanoshells,” Opt. Express20(S5Suppl 5), A694–A705 (2012). [CrossRef] [PubMed]
  25. W. Shockley and H. J. J. Queisser, “Detailed Balance Limit of Efficiency of pn Junction Solar Cells,” Appl. Phys. (Berl.)32, 510 (1961).
  26. Air Mass 1.5 Direct+Circumsolar spectrum, American Society for Testing and Materials,” http://rredc.nrel.gov/solar/spectra/am1.5/ .
  27. N. Anttu and H. Q. Xu, “Efficient light management in vertical nanowire arrays for photovoltaics,” Opt. Express21(S3), A558 (2013). [CrossRef]
  28. C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express17(22), 19371–19381 (2009). [CrossRef] [PubMed]
  29. F. Qin, Z.-M. Meng, X.-L. Zhong, Y. L. Liu, and Z. Y. Li, “Fabrication of semiconductor-polymer compound nonlinear photonic crystal slab with highly uniform infiltration based on nano-imprint lithography technique,” Opt. Express20(12), 13091–13099 (2012). [CrossRef] [PubMed]
  30. A. Mellor, H. Hauser, C. Wellens, J. Benick, J. Eisenlohr, M. Peters, A. Guttowski, I. Tobías, A. Martí, A. Luque, and B. Bläsi, “Nanoimprinted diffraction gratings for crystalline silicon solar cells: implementation, characterization and simulation,” Opt. Express21(S2Suppl 2), A295–A304 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited