OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 15 — Jul. 29, 2013
  • pp: 18061–18067

Photoacoustic tomography extracted from speckle noise in acoustically inhomogeneous tissue

Dan Wu, Chao Tao, and Xiaojun Liu  »View Author Affiliations

Optics Express, Vol. 21, Issue 15, pp. 18061-18067 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1468 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Photoacoustic tomography is usually limited to acoustically homogeneous tissue. A hybrid scheme is developed to break this limitation by utilizing ultrasound to determine the unknown Green's function of inhomogeneous tissue. The method can effectively decrease the distortion and false contrast in images by extracting information from speckle noise. The method does not depend on the prior knowledge of tissue and the medium complexity. Moreover, the estimation of Green’s function and the photoacoustic detection are performed by the same transducer. Therefore, the scheme could be easily integrated into a classical photoacoustic tomography system and extend its application in speckle environment.

© 2013 OSA

OCIS Codes
(110.7170) Imaging systems : Ultrasound
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.5120) Medical optics and biotechnology : Photoacoustic imaging
(170.6960) Medical optics and biotechnology : Tomography

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: May 16, 2013
Revised Manuscript: July 5, 2013
Manuscript Accepted: July 12, 2013
Published: July 19, 2013

Virtual Issues
Vol. 8, Iss. 8 Virtual Journal for Biomedical Optics

Dan Wu, Chao Tao, and Xiaojun Liu, "Photoacoustic tomography extracted from speckle noise in acoustically inhomogeneous tissue," Opt. Express 21, 18061-18067 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol.21(7), 803–806 (2003). [CrossRef] [PubMed]
  2. L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science335(6075), 1458–1462 (2012). [CrossRef] [PubMed]
  3. J. Gamelin, A. Maurudis, A. Aguirre, F. Huang, P. Guo, L. V. Wang, and Q. Zhu, “A real-time photoacoustic tomography system for small animals,” Opt. Express17(13), 10489–10498 (2009). [CrossRef] [PubMed]
  4. S. Hu and L. V. Wang, “Photoacoustic imaging and characterization of the microvasculature,” J. Biomed. Opt.15(1), 011101 (2010). [CrossRef] [PubMed]
  5. A. Dima and V. Ntziachristos, “Non-invasive carotid imaging using optoacoustic tomography,” Opt. Express20(22), 25044–25057 (2012). [CrossRef] [PubMed]
  6. Y. Sun, E. Sobel, and H. Jiang, “Quantitative three-dimensional photoacoustic tomography of the finger joints: an in vivo study,” J. Biomed. Opt.14(6), 064002 (2009). [CrossRef] [PubMed]
  7. Y. Sun, E. S. Sobel, and H. Jiang, “First assessment of three-dimensional quantitative photoacoustic tomography for in vivo detection of osteoarthritis in the finger joints,” Med. Phys.38(7), 4009–4017 (2011). [CrossRef] [PubMed]
  8. J. Xiao, L. Yao, Y. Sun, E. S. Sobel, J. He, and H. Jiang, “Quantitative two-dimensional photoacoustic tomography of osteoarthritis in the finger joints,” Opt. Express18(14), 14359–14365 (2010). [CrossRef] [PubMed]
  9. J. R. Rajian, M. L. Fabiilli, J. B. Fowlkes, P. L. Carson, and X. Wang, “Drug delivery monitoring by photoacoustic tomography with an ICG encapsulated double emulsion,” Opt. Express19(15), 14335–14347 (2011). [CrossRef] [PubMed]
  10. Y. Sun, K. C. P. Li, and B. O'Neill, “Multispectral photoacoustic imaging of tissue denaturation induced by high-intensity focused ultrasound treatment,” Proc. SPIE8581, 85813H, 85813H-5 (2013). [CrossRef]
  11. L. Nie, Z. Guo, and L. V. Wang, “Photoacoustic tomography of monkey brain using virtual point ultrasonic transducers,” J. Biomed. Opt.16(7), 076005 (2011). [CrossRef] [PubMed]
  12. J. Xia, Z. Guo, K. Maslov, A. Aguirre, Q. Zhu, C. Percival, and L. V. Wang, “Three-dimensional photoacoustic tomography based on the focal-line concept,” J. Biomed. Opt.16(9), 090505 (2011). [CrossRef] [PubMed]
  13. Y. Wang, T. N. Erpelding, L. Jankovic, Z. Guo, J. L. Robert, G. David, and L. V. Wang, “In vivo three-dimensional photoacoustic imaging based on a clinical matrix array ultrasound probe,” J. Biomed. Opt.17(6), 061208 (2012). [CrossRef] [PubMed]
  14. Z. Guo, S. Hu, and L. V. Wang, “Calibration-free absolute quantification of optical absorption coefficients using acoustic spectra in 3D photoacoustic microscopy of biological tissue,” Opt. Lett.35, 2067–2069 (2010). [CrossRef] [PubMed]
  15. C. Kim, T. N. Erpelding, L. Jankovic, M. D. Pashley, and L. V. Wang, “Deeply penetrating in vivo photoacoustic imaging using a clinical ultrasound array system,” Biomed. Opt. Express1(1), 278–284 (2010). [CrossRef] [PubMed]
  16. M.-L. Li, Y.-C. Tseng, and C.-C. Cheng, “Model-based correction of finite aperture effect in photoacoustic tomography,” Opt. Express18(25), 26285–26292 (2010). [CrossRef] [PubMed]
  17. M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum.77(4), 041101 (2006). [CrossRef]
  18. X. Jin and L. V. Wang, “Thermoacoustic tomography with correction for acoustic speed variations,” Phys. Med. Biol.51(24), 6437–6448 (2006). [CrossRef] [PubMed]
  19. D. Wu, C. Tao, and X. Liu, “Photoacoustic tomography in scattering biological tissue by using virtual time reversal mirror,” J. Appl. Phys.109(8), 084702 (2011). [CrossRef]
  20. D. Wu, X. Wang, C. Tao, and X. J. Liu, “Limited-view photoacoustic tomography utilizing backscatterers as virtual transducers,” Appl. Phys. Lett.99(24), 244102 (2011). [CrossRef]
  21. X. L. Deán-Ben, V. Ntziachristos, and D. Razansky, “Statistical optoacoustic image reconstruction using a-prior knowledge on the location of acoustic distortions,” Appl. Phys. Lett.98(17), 171110 (2011). [CrossRef]
  22. C. Yoon, J. Kang, S. Han, Y. Yoo, T.-K. Song, and J. H. Chang, “Enhancement of photoacoustic image quality by sound speed correction: ex vivo evaluation,” Opt. Express20(3), 3082–3090 (2012). [CrossRef] [PubMed]
  23. J.-L. Robert and M. Fink, “Green’s function estimation in speckle using the decomposition of the time reversal operator: Application to aberration correction in medical imaging,” J. Acoust. Soc. Am.123(2), 866–877 (2008). [CrossRef] [PubMed]
  24. Y. Xu and L. V. Wang, “Time reversal and its application to tomography with diffracting sources,” Phys. Rev. Lett.92(3), 033902 (2004). [CrossRef] [PubMed]
  25. E. Bossy, K. Daoudi, A.-C. Boccara, M. Tanter, J.-F. Aubry, G. Montaldo, and M. Fink, “Time reversal of photoacoustic waves,” Appl. Phys. Lett.89(18), 184108 (2006). [CrossRef]
  26. I. Vasconcelos, R. Snieder, and H. Douma, “Representation theorems and Green’s function retrieval for scattering in acoustic media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.80(3), 036605 (2009). [CrossRef] [PubMed]
  27. F. L. Lizzi, M. Greenebaum, E. J. Feleppa, M. Elbaum, and D. J. Coleman, “Theoretical Framework for Spectrum Analysis in Ultrasonic Tissue Characterization,” J. Acoust. Soc. Am.73(4), 1366–1373 (1983). [CrossRef] [PubMed]
  28. R. I. Siphanto, K. K. Thumma, R. G. M. Kolkman, T. G. van Leeuwen, F. F. M. de Mul, J. W. van Neck, L. N. A. van Adrichem, and W. Steenbergen, “Serial noninvasive photoacoustic imaging of neovascularization in tumor angiogenesis,” Opt. Express13(1), 89–95 (2005). [CrossRef] [PubMed]
  29. C. Tao and X. Liu, “Reconstruction of high quality photoacoustic tomography with a limited-view scanning,” Opt. Express18(3), 2760–2766 (2010). [CrossRef] [PubMed]
  30. Y. Xu, L. V. Wang, G. Ambartsoumian, and P. Kuchment, “Reconstructions in limited-view thermoacoustic tomography,” Med. Phys.31(4), 724–733 (2004). [CrossRef] [PubMed]
  31. D. Wu, C. Tao, X. Liu, and X. Wang, “Influence of limited-view scanning on depth imaging of photoacoustic tomography,” Chin. Phys. B21(1), 014301 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited