OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 15 — Jul. 29, 2013
  • pp: 18068–18078

Temperature dependence of the fractional thermal load of Nd:YVO4 at 1064 nm lasing and its influence on laser performance

Yajun Wang, Wenhai Yang, Haijun Zhou, Meiru Huo, and Yaohui Zheng  »View Author Affiliations

Optics Express, Vol. 21, Issue 15, pp. 18068-18078 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (944 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Temperature dependence of thermal effect for neodymium doped yttrium orthovanadate crystal is quantified by measuring its dioptric power. With the boundary temperature range from 293 K to 353 K, the increase of fractional thermal load (lasing at 1064 nm, pumping at 888 nm) is from 16.9% to 24.9% with lasing, which is attributed to the rise of upconversion parameter and thermal conductivity. The influence of the boundary temperature on the output characteristic of a high-power single frequency laser is also investigated. The maximum output power decreases from 25.3 W to 13.5 W with the increase of boundary temperature from 293 K to 353 K. Analysis results indicate that further power scaling can be achieved by controlling the Nd:YVO4 temperature to a lower.

© 2013 osa

OCIS Codes
(140.3460) Lasers and laser optics : Lasers
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3530) Lasers and laser optics : Lasers, neodymium
(140.6810) Lasers and laser optics : Thermal effects
(140.3515) Lasers and laser optics : Lasers, frequency doubled
(140.3613) Lasers and laser optics : Lasers, upconversion

ToC Category:
Lasers and Laser Optics

Original Manuscript: May 28, 2013
Revised Manuscript: July 12, 2013
Manuscript Accepted: July 12, 2013
Published: July 19, 2013

Yajun Wang, Wenhai Yang, Haijun Zhou, Meiru Huo, and Yaohui Zheng, "Temperature dependence of the fractional thermal load of Nd:YVO4 at 1064 nm lasing and its influence on laser performance," Opt. Express 21, 18068-18078 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. F. Chen and Y. P. Lan, “Comparison between c-cut and α-cut Nd:YVO4lasers passively Q-switched with a Cr4+:YAG saturable absorber,” Appl. Phys. B74(4–5), 415–418 (2002). [CrossRef]
  2. W. Koechner, “Thermo-Optic Effects and Heat Removal,” in Solid-State Laser Engineering, W. T. Atlanta, eds. (Academic, New York, 1999), pp.406–407. [CrossRef]
  3. P. Dekker, H. M. Pask, D. J. Spence, and J. A. Piper, “Continuous-wave, intracavity doubled, self-Raman laser operation in Nd:GdVO4at 586.5 nm,” Opt. Express15(11), 7038–7046 (2007). [CrossRef] [PubMed]
  4. S. R. Bowman, S. P. Oconnor, S. Biswal, N. J. Condon, and A. Rosenberg, “Minimizing heat generation in solid-state lasers,” IEEE J. Quantum Electron.46(7), 1076–1085 (2010). [CrossRef]
  5. F. Lenhardt, M. Nittmann, T. Bauer, J. Bartschke, and J. A. Lhuillier, “High-power 888-nm-pumped Nd:YVO41342-nm oscillator operating in the TEM00mode,” Appl. Phys. B96(4), 803–807 (2009). [CrossRef]
  6. C. Jacinto, S. L. Oliveira, T. Catunda, A. A. Andrade, J. D. Myers, and M. J. Myers, “Upconversion effect on fluorescence quantum efficiency and heat generation in Nd3+-doped materials,” Opt. Express25(6), 2040–2046 (2005). [CrossRef]
  7. J. D. Zuegel and W. Seka, “Upconversion and reduced 4F3/2upper-state lifetime in intensely pumped Nd:YLF,” Appl. Opt.38(12), 2714–2723 (2002). [CrossRef]
  8. C. Jacinto, D. N. Messias, A. A. Andrade, and T. Catunda, “Energy transfer upconversion determination by thermal-lens and Z-scan techniques in Nd3+-doped laser materials,” J. Opt. Soc. Am. B26(5), 1002–1007 (2009). [CrossRef]
  9. A. Camargo, C. Jacinto, T. Catunda, and L. Nunes, “Auger upconversion energy transfer losses and efficient 1.06 μ m laser emission in Nd3+doped fluoroindogallate glass,” Appl. Phys. B83(4), 565–569 (2006). [CrossRef]
  10. J. L. Blows, T. Omatsu, J. Dawes, H. Pask, and M. Tateda, “Heat generation in Nd:YVO4with and without laser action,” IEEE Photon. Technol. Lett.10(12), 1727–1729 (1998). [CrossRef]
  11. X. Delen, F. Balembois, O. Musset, and P. Georges, “Characteristics of laser operation at 1064 nm in Nd:YVO4under diode pumping at 808 and 914 nm,” J. Opt. Soc. Am. B28(1), 52–57 (2011). [CrossRef]
  12. L. Meilhac, G. Pauliat, and G. Roosen, “Determination of the energy diffusion and the auger upconversion constants in a Nd:YVO4standing wave laser,” Opt. Commun203(3–7), 341–347 (2002). [CrossRef]
  13. Y. F. Chen, C. C. Liao, Y. P. Lan, and S. C. Wang, “Determination of the auger upconversion rate in fiber-coupled diode end-pumped Nd:YAG and Nd:YVO4crystals,” Appl. Phys. B70(4), 487–490 (2000). [CrossRef]
  14. T. Chuang and H. R. Verdun, “Energy transfer up-conversion and excited state absorption of laser radiation in Nd:YLF laser crystals,” IEEE J. Quantum Electron.32(1), 79–91 (1996). [CrossRef]
  15. C. Jacinto, T. Catunda, D. Jaque, L. E. Bausa, and J. G. Sole, “Thermal lens and heat generation of Nd:YAG lasers operating at 1.064 and 1.34 μ m,” Opt. Express16(9), 6317–6323 (2008). [CrossRef] [PubMed]
  16. I. O. Musgrave, “Study of the physics of the power-scaling of end-pumped solid-state laser sources based on Nd:YVO4,” Doctor Thesis , pp. 50–54.
  17. X. Delen, F. Balembois, and P. Georges, “Temperature dependence of the emission cross section of Nd:YVO4around 1064 nm and consequences on laser operation,” J. Opt. Soc. Am. B28(5), 972–976 (2011). [CrossRef]
  18. G. Turri, H. P. Jenssen, F. Cornacchia, M. Tonelli, and M. Bass, “Temperature-dependent stimulated emission cross section in Nd:YVO4crystals,” J. Opt. Soc. Am. B26(11), 2084–2088 (2009). [CrossRef]
  19. A. Rapaport, S. Zhao, G. Xiao, A. Howard, and M. Bass, “Temperature dependence of the 1.06-μ m stimulated emission cross section of neodymium in YAG and in GSGG,” Appl. Opt.41(33), 7052–7057 (2002). [CrossRef] [PubMed]
  20. R. Kapoor, P. K. Mukhopadhyay, J. George, and S. K. Sharma, “Thermal lens measurement technique in end-pumped solid state lasers: Application to diode-pumped microchip lasers,” Pramana-J. Phys.52(6), 623–629 (1999). [CrossRef]
  21. P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron.35(4), 647–655 (1999). [CrossRef]
  22. M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett.56(19), 1831–1833 (1990). [CrossRef]
  23. J. C. Bermudez, V. J. Pinto-Robledo, A. V. Kiryanov, and M. J. Damzen, “The thermo-lensing effect in a grazing incidence, diode-side-pumped Nd:YVO4laser,” Opt. Commun.210(9), 75–82 (2002). [CrossRef]
  24. D. E. Zelmon, J. J. Lee, K. M. Currin, J. M. Northridge, and D. Perlov, “Revisiting the optical properties of Nd doped yttrium orthovanadate,” Appl. Opt.49(4), 644–647 (2010). [CrossRef] [PubMed]
  25. Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: Influence of thermal effect,” IEEE J. Quantum Electron.33(8), 1424–1429 (1997). [CrossRef]
  26. J. K. Jabczynski, “Modeling of diode pumped laser with pump dependent diffraction loss,” Opt. Commun.182(4–6), 413–422 (2000). [CrossRef]
  27. W. A. Clarkson, “Thermal effects and their mitigation in end-pumped solid-state lasers,” J. Phys. D: Appl. Phys.34(16), 2381–2395 (2001). [CrossRef]
  28. Y. J. Wang, Y. H. Zheng, C. D. Xie, and K. C. Peng, “High-power, low-noise Nd:YAP/LBO laser with dual wavelength outputs,” IEEE J. Quantum Electron.47(7), 1006–1013 (2011). [CrossRef]
  29. Y. H. Zheng, Y. J. Wang, C. D. Xie, and K. C. Peng, “Single-frequency Nd:YVO4laser at 671 nm with high-output power of 2.8 W,” IEEE J. Quantum Electron.48(1), 67–71 (2012). [CrossRef]
  30. M. O. Ramirez, D. Jaque, L. E. Bausa, I. R. Martin, F. Lahoz, E. Cavalli, A. Speghini, and M. Bettinelli, “Temperature dependence of Nd3+↔ Yb3+energy transfer in the YAl3(BO3)4nonlinear laser crystal,” J. Appl. Phys.97(9), 093510 (2005). [CrossRef]
  31. S. D. Xia and P. A. Tanner, “Theory of one-phonon-assisted energy transfer between rare-earth ions in crystals,” Phys. Rev. B66(21), 214305 (2002). [CrossRef]
  32. D. K. Sardar and R. M. Yow, “Stack components of 4F3/2, 4I9/2and 4I11/2manifold energy levels and effects of temperature on the laser transition of Nd3+in YVO4,” Opt. Mater.14(1), 5–11 (2000). [CrossRef]
  33. W. M. Yen, W. C. Scott, and A. L. Schawlow, “Phonon-induced relaxation in excited optical states of trivalent praseodymium in LaF3,” Phys. Rev.136(1A), A271–A283 (1964). [CrossRef]
  34. H. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt.5(10), 1550–1566 (1966). [CrossRef] [PubMed]
  35. Y. H. Zheng, F. Q. Li, Y. J. Wang, K. S. Zhang, and K. C. Peng, “High-stability single-frequency green laser with a wedge Nd:YVO4as a polarizing beam splitter,” Opt. Commun.283(2), 309–312 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited