OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 15 — Jul. 29, 2013
  • pp: 18178–18187

Tailor the surface-wave properties of a plasmonic metal by a metamaterial capping

Zhengyong Song, Xin Li, Jiaming Hao, Shiyi Xiao, Meng Qiu, Qiong He, Shaojie Ma, and Lei Zhou  »View Author Affiliations

Optics Express, Vol. 21, Issue 15, pp. 18178-18187 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2628 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show that putting an ultra-thin anisotropic metamaterial layer on a plasmonic surface significantly enriches the surface wave (SW) characteristics of the system, which now supports SWs with transverse-magnetic (TM) and transverse-electric (TE) polarizations simultaneously. In addition, the generated SWs exhibit hybridized polarization characteristics in certain cases, and a SW band gap opens within a particular propagation direction range. We designed and fabricated a realistic structure based on the proposed model, and combined microwave experiments with full-wave simulations to verify the fascinating theoretical predictions. Several potential applications of the proposed system are discussed in the end.

© 2013 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(240.6690) Optics at surfaces : Surface waves
(160.3918) Materials : Metamaterials
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

Original Manuscript: May 20, 2013
Revised Manuscript: June 30, 2013
Manuscript Accepted: July 10, 2013
Published: July 22, 2013

Zhengyong Song, Xin Li, Jiaming Hao, Shiyi Xiao, Meng Qiu, Qiong He, Shaojie Ma, and Lei Zhou, "Tailor the surface-wave properties of a plasmonic metal by a metamaterial capping," Opt. Express 21, 18178-18187 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Raether, Surface Plasmons (Springer-Verlag, Berlin, 1988).
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  3. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep.408(3–4), 131–314 (2005). [CrossRef]
  4. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006). [CrossRef] [PubMed]
  5. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater.2(4), 229–232 (2003). [CrossRef] [PubMed]
  6. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006). [CrossRef] [PubMed]
  7. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998). [CrossRef]
  8. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B58(11), 6779–6782 (1998). [CrossRef]
  9. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett.92(10), 107401 (2004). [CrossRef] [PubMed]
  10. E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater.16(19), 1685–1706 (2004). [CrossRef]
  11. S. M. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced raman scattering,” Science275(5303), 1102–1106 (1997). [CrossRef] [PubMed]
  12. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett.78(9), 1667–1670 (1997). [CrossRef]
  13. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305(5685), 847–848 (2004). [CrossRef] [PubMed]
  14. F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt.7(2), S97–S101 (2005). [CrossRef]
  15. S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett.97(17), 176805 (2006). [CrossRef] [PubMed]
  16. D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express18(2), 754–764 (2010). [CrossRef] [PubMed]
  17. Y. G. Ma, L. Lan, S. M. Zhong, and C. K. Ong, “Experimental demonstration of subwavelength domino plasmon devices for compact high-frequency circuit,” Opt. Express19(22), 21189–21198 (2011). [CrossRef] [PubMed]
  18. X. Q. Huang, S. Y. Xiao, D. X. Ye, J. T. Huangfu, Z. Y. Wang, L. X. Ran, and L. Zhou, “Fractal plasmonic metamaterials for subwavelength imaging,” Opt. Express18(10), 10377–10387 (2010). [CrossRef] [PubMed]
  19. J. M. Hao, Y. Yuan, L. X. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett.99(6), 063908 (2007). [CrossRef] [PubMed]
  20. J. M. Hao and L. Zhou, “Electromagnetic wave scatterings by anisotropic metamaterials: Generalized 4×4 transfer-matrix method,” Phys. Rev. B77(9), 094201 (2008). [CrossRef]
  21. J. M. Hao, L. Zhou, and C. T. Chan, “An effective-medium model for high-impedance surfaces,” Appl. Phys., A Mater. Sci. Process.87(2), 281–284 (2007). [CrossRef]
  22. S. L. Sun, Q. He, S. Y. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater.11(5), 426–431 (2012). [CrossRef] [PubMed]
  23. F. Aieta, P. Genevet, M. A. Kats, N. F. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett.12(9), 4932–4936 (2012). [CrossRef] [PubMed]
  24. CONCERTO 7.0, developed by Vector Fields Ltd, England (2008).
  25. C. O. M. S. O. L. Multiphysics, 3.5, developed by COMSOL, Inc., Burlington, USA 2008, see http://www.comsol.com/ .
  26. H. J. Rance, I. R. Hooper, A. P. Hibbins, and J. R. Sambles, “Structurally dictated anisotropic designer surface plasmons,” Appl. Phys. Lett.99(18), 181107 (2011). [CrossRef]
  27. J. Saxler, J. G. Rivas, C. Janke, H. P. M. Pellemans, P. H. Bolivar, and H. Kurz, “Time-domain measurements of surface plasmon polaritons in the terahertz frequency range,” Phys. Rev. B69(15), 155427 (2004). [CrossRef]
  28. D. Sievenpiper, L. Zhang, R. Broas, N. G. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw. Theory Tech.47(11), 2059–2074 (1999). [CrossRef]
  29. X. P. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A.110(1), 40–45 (2013). [CrossRef] [PubMed]
  30. See, for example,D. Deslandes and K. Wu, “Integrated microstrip and rectangular waveguide in planar form,” IEEE Microw. Wirel. Compon. Lett.11(2), 68–70 (2001). [CrossRef]
  31. R. F. Harrington, Time-Harmonic Electromagnetic Fields (IEEE press, 1961).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited