OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 15 — Jul. 29, 2013
  • pp: 18216–18224

Photonic de Haas-van Alphen effect

Kejie Fang, Zongfu Yu, and Shanhui Fan  »View Author Affiliations


Optics Express, Vol. 21, Issue 15, pp. 18216-18224 (2013)
http://dx.doi.org/10.1364/OE.21.018216


View Full Text Article

Acrobat PDF (877 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Based on the recently proposed concept of effective gauge potential and magnetic field for photons, we numerically demonstrate a photonic de Haas-van Alphen effect. We show that in a dynamically modulated photonic resonator lattice exhibiting an effect magnetic field, the trajectories of the light beam at a given frequency have the same shape as the constant energy contour for the photonic band structure of the lattice in the absence of the effective magnetic field.

© 2013 OSA

OCIS Codes
(230.4555) Optical devices : Coupled resonators
(130.4110) Integrated optics : Modulators

ToC Category:
Optical Devices

History
Original Manuscript: June 3, 2013
Revised Manuscript: June 26, 2013
Manuscript Accepted: June 26, 2013
Published: July 22, 2013

Citation
Kejie Fang, Zongfu Yu, and Shanhui Fan, "Photonic de Haas-van Alphen effect," Opt. Express 21, 18216-18224 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-15-18216


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. U. Peschel, T. Pertsch, and F. Lederer, “Optical Bloch oscillations in waveguide arrays,” Opt. Lett.23, 1701–1703 (1998). [CrossRef]
  2. P. St. J. Russell and T. A. Birks, “Hamiltonian optics of nonuniform photonic crystals,” J. of Lightw. Tech17, 1982–1988 (1999). [CrossRef]
  3. R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg, “Experimental observation of linear and nonlinear optical Bloch oscillations,” Phys. Rev. Lett.83, 4756–4759 (1999). [CrossRef]
  4. G. Lenz, I. Talanina, and C.M. de Sterke, “Bloch oscillations in an array of curved optical waveguides,” Phys. Rev. Lett.83, 963–966 (1999). [CrossRef]
  5. R. Sapienza, P. Costantino, D. Wiersma, M. Ghulinyan, C. J. Oton, and L. Pavesi, “Optical analogue of electronic Bloch oscillations,” Phys. Rev. Lett.91, 263902 (2003). [CrossRef]
  6. R. Khomeriki and S. Ruffo, “Nonadiabatic Landau-Zener tunneling in waveguide arrays with a step in the refractive index,” Phys. Rev. Lett.94, 113904 (2005). [CrossRef] [PubMed]
  7. H. Trompeter, W. Krolikowski, D. N. Neshev, A. S. Desyatnikov, A. A. Sukhorukov, Y. S. Kivshar, T. Pertsch, U. Peschel, and F. Lederer, “Bloch oscillations and Zener tunneling in two-dimensional photonic lattices,” Phys. Rev. Lett.96, 053903 (2006). [CrossRef] [PubMed]
  8. L. Verslegers, P. B. Catrysse, Z. Yu, and S. Fan, “Deep-subwavelength focusing and steering of light in an aperiodic metallic waveguide array,” Phys. Rev. Lett.103, 033902 (2009). [CrossRef] [PubMed]
  9. K. Fang, Z. Yu, and S. Fan, “Photonic Aharonov-Bohm effect based on dynamic modulation,” Phys. Rev. Lett.108, 153901 (2012). [CrossRef] [PubMed]
  10. K. Fang, Z. Yu, and S. Fan, “Realizing effective magnetic field for photons by controlling the phase of dynamic modulation,” Nature Photons.6, 782–787 (2012). [CrossRef]
  11. K. Fang, Z. Yu, and S. Fan, “Experimental demonstration of a photonic Aharonov-Bohm effect at radio frequencies,” Phys. Rev. B87, 060301(R) (2013). [CrossRef]
  12. Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nature Photon.3, 91–94 (2009). [CrossRef]
  13. M. Hafezi, E. A. Demler, M. D. Lukin, and J. M. Taylor, “Robust optical delay lines with topological protection,” Nature Phys.7, 907–912 (2011). [CrossRef]
  14. R. O. Umucallar and I. Carusotto, “Artificial gauge field for photons in coupled cavity arrays,” Phys. Rev. A84, 043804 (2011). [CrossRef]
  15. A. B. Khanikaev, S. H. Mousavi, W.-K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, “Photonic topological insulators,” Nat. Mater.12, 233–239 (2013). [CrossRef]
  16. M. C. Rechtsman, J. M. Zeuner, A. Tnnermann, S. Nolte, M. Segev, and A. Szameit, “Strain-induced pseudo-magnetic field and photonic Landau levels in dielectric structures,” Nature Photon.7, 153–158 (2013). [CrossRef]
  17. M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature496, 196 (2013). [CrossRef] [PubMed]
  18. J. Koch, A. A. Houck, K. Le Hur, and S. M. Girvin, “Time-reversal-symmetry breaking in circuit-QED-based photon lattices,” Phys. Rev. A82, 043811 (2010). [CrossRef]
  19. T. Kitagawa, E. Berg, M. Rudner, and E. Demler, “Topological characterization of periodically driven quantum systems, ” Phys. Rev. B82, 235114 (2010). [CrossRef]
  20. N. H. Lindner, G. Refael, and V. Galitski, “Floquet topological insulator in semiconductor quantum wells, ” Nature Phys.7, 490 (2011). [CrossRef]
  21. J. H. Shirley, “Solution of the Schrdinger Equation with a Hamiltonian periodic in time,” Phys. Rev.138, B979–B987 (1965). [CrossRef]
  22. H. Sambe, “Steady states and quasienergies of a quantum-mechanical system in an oscillating field,” Phys. Rev. A7, 2203–2213 (1973). [CrossRef]
  23. J. M. Luttinger, “The effect of a magnetic field on electrons in a periodic potential,” Phys. Rev.84, 814–817 (1951). [CrossRef]
  24. R. Kosloff, “Time-dependent quantum-mechanical methods for molecular dynamics,” J. Phys. Chem92, 2087–2100 (1988). [CrossRef]
  25. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Brooks Cole, 1976).
  26. Y. Takahashi, H. Hagino, Y. Tanaka, B. S. Song, T. Asano, and S. Noda, “High-Q nanocavity with a 2-ns photon lifetime,” Opt. express15, 17206–17213 (2007). [CrossRef] [PubMed]
  27. M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nature Photons.2, 741–747 (2008). [CrossRef]
  28. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Science394, 251–253 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited