OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 15 — Jul. 29, 2013
  • pp: 18325–18335

A low-loss photonic silica nanofiber for higher-order modes

S. Ravets, J. E. Hoffman, L. A. Orozco, S. L. Rolston, G. Beadie, and F. K. Fatemi  »View Author Affiliations

Optics Express, Vol. 21, Issue 15, pp. 18325-18335 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (7513 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical nanofibers confine light to subwavelength scales, and are of interest for the design, integration, and interconnection of nanophotonic devices. Here we demonstrate high transmission (> 97%) of the first family of excited modes through a 350 nm radius fiber, by appropriate choice of the fiber and precise control of the taper geometry. We can design the nanofibers so that these modes propagate with most of their energy outside the waist region. We also present an optical setup for selectively launching these modes with less than 1% fundamental mode contamination. Our experimental results are in good agreement with simulations of the propagation. Multimode optical nanofibers expand the photonic toolbox, and may aid in the realization of a fully integrated nanoscale device for communication science, laser science or other sensing applications.

© 2013 OSA

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(350.5500) Other areas of optics : Propagation

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: May 28, 2013
Revised Manuscript: July 16, 2013
Manuscript Accepted: July 19, 2013
Published: July 24, 2013

S. Ravets, J. E. Hoffman, L. A. Orozco, S. L. Rolston, G. Beadie, and F. K. Fatemi, "A low-loss photonic silica nanofiber for higher-order modes," Opt. Express 21, 18325-18335 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. L. Kien, J. Liang, K. Hakuta, and V. Balykin, “Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun.242, 445–455 (2004). [CrossRef]
  2. S. Leon-Saval, T. Birks, W. Wadsworth, P. S. J. Russell, and M. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express12, 2864–2869 (2004). [CrossRef] [PubMed]
  3. E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett.104, 203603 (2010). [CrossRef] [PubMed]
  4. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426, 816–819 (2003). [CrossRef] [PubMed]
  5. T. Birks and Y. Li, “The shape of fiber tapers,” J. Lightwave Technol.10, 432–438 (1992). [CrossRef]
  6. X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett.88, 223501 (2006). [CrossRef]
  7. K. P. Nayak, F. L. Kien, Y. Kawai, K. Hakuta, K. Nakajima, H. T. Miyazaki, and Y. Sugimoto, “Cavity formation on an optical nanofiber using focused ion beam milling technique,” Opt. Express19, 14040–14050 (2011). [CrossRef] [PubMed]
  8. C. Wuttke, M. Becker, S. Brückner, M. Rothhardt, and A. Rauschenbeutel, “Nanofiber fabry–perot microresonator for nonlinear optics and cavity quantum electrodynamics,” Opt. Lett.37, 1949–1951 (2012). [CrossRef] [PubMed]
  9. G. Brambilla, V. Finazzi, and D. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express12, 2258–2263 (2004). [CrossRef] [PubMed]
  10. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett.91, 043902 (2003). [CrossRef] [PubMed]
  11. M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. N. Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun.285, 4648–4654 (2012). [CrossRef]
  12. F. K. Fatemi, “Cylindrical vector beams for rapid polarization-dependent measurements in atomic systems,” Opt. Express19, 25143–25150 (2011). [CrossRef]
  13. F. Warken, “Ultra thin glass fibers as a tool for coupling light and matter,” Ph.D. thesis, Rheinische Friedrich-Wilhelms Universitat, Mainz, Germany (2007).
  14. S. Ravets, J. E. Hoffman, P. Kordell, J. D. Wong, S. L. Rolston, and L. A. Orozco, “Intermodal energy transfer in a tapered optical fiber: Optimizing transmission,” in preparation (2013).
  15. G. Sagué, A. Baade, and A. Rauschenbeutel, “Blue-detuned evanescent field surface traps for neutral atoms based on mode interference in ultrathin optical fibres,” New J. Phys.10, 113008 (2008). [CrossRef]
  16. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983).
  17. A. Yariv, Optical Electronics in Modern Communications (Oxford University, New York, 1997).
  18. J. A. Pechkis and F. K. Fatemi, “Cold atom guidance in a capillary using blue-detuned, hollow optical modes,” Opt. Express20, 13409–13418 (2012). [CrossRef] [PubMed]
  19. T. E. Dimmick, G. Kakarantzas, T. A. Birks, and P. S. Russell, “Carbon dioxide laser fabrication of fused-fiber couplers and tapers,” Appl. Opt.38, 6845–6848 (1999). [CrossRef]
  20. J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, S. L. Rolston, and L. A. Orozco, “Manufacturing tapered optical fibers with a heat and pull method,” in preparation (2013).
  21. F. Orucevic, V. Lefèvre-Seguin, and J. Hare, “Transmittance and near-field characterization of sub-wavelength tapered optical fibers,” Opt. Express15, 13624–13629 (2007). [CrossRef] [PubMed]
  22. P. D. Ltd, “FIMMWAVE/FIMMPROP,” http://www.photond.com .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

Supplementary Material

» Media 1: AVI (962 KB)     
» Media 2: AVI (1072 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited