OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 15 — Jul. 29, 2013
  • pp: 18344–18353

Understanding the plasmonic properties of dewetting formed Ag nanoparticles for large area solar cell applications

M. Can Günendi, İrem Tanyeli, Gürsoy B. Akgüç, Alpan Bek, Raşit Turan, and Oğuz Gülseren  »View Author Affiliations

Optics Express, Vol. 21, Issue 15, pp. 18344-18353 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2357 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The effects of substrates with technological interest for solar cell industry are examined on the plasmonic properties of Ag nanoparticles fabricated by dewetting technique. Both surface matching (boundary element) and propagator (finite difference time domain) methods are used in numerical simulations to describe plasmonic properties and to interpret experimental data. The uncertainty on the locations of nanoparticles by the substrate in experiment is explained by the simulations of various Ag nanoparticle configurations. The change in plasmon resonance due to the location of nanoparticles with respect to the substrate, interactions among them, their shapes, and sizes as well as dielectric properties of substrate are discussed theoretically and implications of these for the experiment are deliberated.

© 2013 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(350.6050) Other areas of optics : Solar energy
(250.5403) Optoelectronics : Plasmonics
(310.7005) Thin films : Transparent conductive coatings

ToC Category:
Optics at Surfaces

Original Manuscript: May 24, 2013
Revised Manuscript: July 5, 2013
Manuscript Accepted: July 13, 2013
Published: July 24, 2013

M. Can Günendi, İrem Tanyeli, Gürsoy B. Akgüç, Alpan Bek, Raşit Turan, and Oğuz Gülseren, "Understanding the plasmonic properties of dewetting formed Ag nanoparticles for large area solar cell applications," Opt. Express 21, 18344-18353 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010). [CrossRef] [PubMed]
  2. D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett.89(9), 093103 (2006). [CrossRef]
  3. M. Losurdo, M. M. Giangregorio, G. V. Bianco, A. Sacchetti, P. Capezzuto, and G. Bruno, “Enhanced absorption in Au nanoparticles/a-Si:H/c-Si heterojunction solar cells exploiting Au surface plasmon resonance,” Sol. Energy Mater. Sol. Cells93(10), 1749–1754 (2009). [CrossRef]
  4. K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93(19), 191113 (2008). [CrossRef]
  5. U. Guler and R. Turan, “Effect of particle properties and light polarization on the plasmonic resonances in metallic nanoparticles,” Opt. Express18(16), 17322–17338 (2010). [CrossRef] [PubMed]
  6. M. Schmid, R. Klenk, M. Ch. Lux-Steiner, M. Topič, and J. Krč, “Modeling plasmonic scattering combined with thin-film optics,” Nanotechnology22(2), 025204 (2011). [CrossRef] [PubMed]
  7. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003). [CrossRef]
  8. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express16(26), 21793–21800 (2008). [CrossRef] [PubMed]
  9. R. B. Dunbar, T. Pfadler, and L. Schmidt-Mende, “Highly absorbing solar cells--a survey of plasmonic nanostructures,” Opt. Express20(S2Suppl 2), A177–A189 (2012). [CrossRef] [PubMed]
  10. C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science337(6098), 1072–1074 (2012). [CrossRef] [PubMed]
  11. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010). [CrossRef]
  12. S. K. Gray and T. Kupka, “Propagation of light in metallic nanowire arrays: Finite-difference time-domain studies of silver cylinders,” Phys. Rev. B68(4), 045415 (2003). [CrossRef]
  13. S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced fano resonances of a plasmonic nanocube: A Route to Increased-Sensitivity Localized Surface Plasmon Resonance Sensors Revealed,” Nano Lett.11(4), 1657–1663 (2011). [CrossRef] [PubMed]
  14. J. Jung, T. G. Pedersen, T. Søndergaard, K. Pedersen, A. N. Larsen, and B. B. Nielsen, “Electrostatic plasmon resonances of metal nanospheres in layered geometries,” Phys. Rev. B81(12), 125413 (2010). [CrossRef]
  15. U. Hohenester and A. Trügler, “MNPBEM – A Matlab toolbox for the simulation of plasmonic nanoparticles,” Comput. Phys. Commun.183(2), 370–381 (2012). [CrossRef]
  16. A. Centeno, F. Xie, and N. Alford, “Light absorption and field enhancement in two-dimensional arrays of closely spaced silver nanoparticles,” J. Opt. Soc. Am. B28(2), 325–333 (2011). [CrossRef]
  17. T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells93(11), 1978–1985 (2009). [CrossRef]
  18. C. F. Bohren and D. R. Huffman, “Absorption and Scattering of Light by Small Particles” (Wiley-VCH, 2004).
  19. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt.37(22), 5271–5283 (1998). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited