## Squeezed light in an optical parametric oscillator network with coherent feedback quantum control |

Optics Express, Vol. 21, Issue 15, pp. 18371-18386 (2013)

http://dx.doi.org/10.1364/OE.21.018371

Enhanced HTML Acrobat PDF (2108 KB)

### Abstract

We present squeezing and anti-squeezing spectra of the output from a degenerate optical parametric oscillator (OPO) network arranged in different coherent quantum feedback configurations. One OPO serves as a quantum plant, the other as a quantum controller. The addition of coherent feedback enables shaping of the output squeezing spectrum of the plant, and is found to be capable of pushing the frequency of maximum squeezing away from the optical driving frequency and broadening the spectrum over a wider frequency band. The experimental results are in excellent agreement with the developed theory, and illustrate the use of coherent quantum feedback to engineer the quantum-optical properties of the plant OPO output.

© 2013 OSA

**OCIS Codes**

(270.1670) Quantum optics : Coherent optical effects

(270.6570) Quantum optics : Squeezed states

(350.4600) Other areas of optics : Optical engineering

**ToC Category:**

Quantum Optics

**History**

Original Manuscript: May 10, 2013

Revised Manuscript: July 13, 2013

Manuscript Accepted: July 15, 2013

Published: July 24, 2013

**Citation**

Orion Crisafulli, Nikolas Tezak, Daniel B. S. Soh, Michael A. Armen, and Hideo Mabuchi, "Squeezed light in an optical parametric oscillator network with coherent feedback quantum control," Opt. Express **21**, 18371-18386 (2013)

http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-15-18371

Sort: Year | Journal | Reset

### References

- H. M. Wiseman and G. J. Milburn, “All-optical versus electro-optical quantum-limited feedback,” Phys. Rev. A49(5), 4110–4125 (1994). [CrossRef] [PubMed]
- S. Lloyd, “Coherent quantum feedback,” Phys. Rev. A62(2), 022108 (2000). [CrossRef]
- M. Yanagisawa and H. Kimura, “Transfer function approach to quantum control-part I: dynamics of quantum feedback systems,” IEEE Trans. Autom. Control48(12), 2107–2120 (2003). [CrossRef]
- J. Gough and M. R. James, “The series product and its application to quantum feedforward and feedback networks,” IEEE Trans. Autom. Control54(11), 2530–2544 (2009). [CrossRef]
- V. P. Belavkin, “Quantum stochastic calculus and quantum nonlinear filtering,” J. Multivariate Anal.42(2), 171–201 (1992). [CrossRef]
- L. Bouten, R. Van Handel, and M. R. James, “An introduction to quantum filtering,” SIAM J. Control and Optim.46(6), 2199–2241 (2007). [CrossRef]
- H. Mabuchi, “Coherent-feedback control strategy to suppress spontaneous switching in ultralow power optical bistability,” Appl. Phys. Lett.98(19), 193109 (2011). [CrossRef]
- J. Kerckhoff and , “Designing quantum memories with embedded control: photonic circuits for autonomous quantum error correction,” Phys. Rev. Lett.105(19), 040502 (2010). [CrossRef] [PubMed]
- R. L. Hudson and K. R. Parthasarathy, “Quantum Ito’s formula and stochastic evolutions,” Comm. Math. Phys.93(3), 301–323 (1984). [CrossRef]
- C. W. Gardiner and M. J. Collett, “Input and output in damped quantum systems: quantum stochastic differential equations and the master equation,” Phys. Rev. A31(6), 3761–3774 (1985). [CrossRef] [PubMed]
- C. W. Gardiner, “Driving a quantum system with the output field from another driven quantum system,” Phys. Rev. Lett.70(15), 2269–2272 (1993). [CrossRef] [PubMed]
- H. J. Carmichael, “Quantum trajectory theory for cascaded open systems,” Phys. Rev. Lett.70(15), 2273–2276 (1993). [CrossRef] [PubMed]
- H. Mabuchi, “Coherent-feedback quantum control with a dynamic compensator,” Phys. Rev. A78(3), 032323 (2008). [CrossRef]
- S. Iida, M. Yukawa, H. Yonezawa, N. Yamamoto, and A. Furusawa, “Experimental demonstration of coherent feedback control on optical field squeezing,” IEEE Trans. Autom. Control57(8), 2045–2050 (2012). [CrossRef]
- J. Kerckhoff and K. W. Lehnert, “Superconducting microwave multivibrator produced by coherent feedback,” Phys. Rev. Lett.109(15), 153602 (2012). [CrossRef] [PubMed]
- T. C. Ralph, “Quantum key distribution with continuous variables in optics” in Quantum Information with Continuous Variables (Springer, 2003). [CrossRef]
- H. Vahlbruch, S. Chelkowski, K. Danzmann, and R. Schnabel, “Quantum engineering of squeezed states for quantum communication and metrology,” New J. Phys.10(9), 66366 (2007).
- M. J. Collett and C. W. Gardiner, “Squeezing of intracavity and traveling-wave light fields produced in parametric amplification,” Phys. Rev. A30(3), 1386–1391 (1984). [CrossRef]
- R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett.55(22), 2409–2412 (1985). [CrossRef] [PubMed]
- L.-A. Wu, M. Xiao, and H. J. Kimble, “Squeezed states of light from an optical parametric oscillator,” J. Opt. Soc. Am. B4(10), 1465–1475 (1987). [CrossRef]
- C. M. Caves, “Quantum-mechanical noise in an interferometer,” Phys. Rev. D23(8), 1693–1708 (1981). [CrossRef]
- K. S. Thorne, S. Hawking, and W. Israel, Three Hundred Years of Gravitation (Cambridge University, 1987).
- H. J. Kimble, Y. Levin, A. B. Matsko, K. S. Thorne, and S. P. Vyatchanin, “Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics,” Phys. Rev. D65(2), 022002 (2001). [CrossRef]
- J. Gea-Banacloche and G. Leuchs , “Squeezed states for interferometric gravitational-wave detectors,” J. Mod. Opt.34, 793–811 (1987). [CrossRef]
- H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, and R. Schnabel, “Coherent control of vacuum squeezing in the gravitational-wave detection band,” Phys. Rev. Lett.97(1) 011101 (2006). [CrossRef] [PubMed]
- N.J. Cerf, J. Clavareau, C. Macchiavello, and J. Roland, “Quantum entanglement enhances the capacity of bosonic channels with memory,” Phys. Rev. A72042330 (2005). [CrossRef]
- Z. Yan, X. Jia, X. Su, Z. Duan, C. Xie, and K. Peng, “Cascaded entanglement enhancement,” Phys. Rev. A85(4), 040305 (2012). [CrossRef]
- G. Zhang and M. R. James, “Quantum feedback networks and control: a brief survey,” Chin. Sci. Bull.57(18), 2200–2214 (2012). [CrossRef]
- J. E. Gough and S. Wildfeuer, “Enhancement of field squeezing using coherent feedback,” Phys. Rev. A80(4), 042107 (2009). [CrossRef]
- R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B31(2), 97–105 (1983). [CrossRef]
- H. P. Yuen and J. Shapiro, “Optical communication with two-photon coherent states–part III: quantum measurements realizable with photoemissive detectors,” IEEE Trans. Inf. Theory1(26), 78–92 (1980). [CrossRef]
- H. P. Yuen and V. W. S. Chan, “Noise in homodyne and heterodyne detection,” Opt. Lett.8(3), 177–179 (1983). [CrossRef] [PubMed]
- G. Breitenbach, S. Schiller, and J. Mlynek, “Measurement of the quantum states of squeezed light,” Nat.387, 471–475 (1997). [CrossRef]
- Y. Takeno, M. Yukawa, H. Yonezawa, and A. Furusawa, “Observation of-9 dB quadrature squeezing with improvement of phase stability in homodyne measurement,” Opt. Express15(7), 4321–4327 (2007). [CrossRef] [PubMed]
- J. U. Fürst, D. V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, C. Marquardt, and G. Leuchs, “Low-threshold optical parametric oscillations in a whispering gallery mode resonator,” Phys. Rev. Lett.105(26), 263904 (2010). [CrossRef]
- A. H. Safavi-Naeini, S. Groeblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezing of light via reflection from a silicon micromechanical resonator,” arXiv:1302.6179 [quant-ph]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.