OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 15 — Jul. 29, 2013
  • pp: 18398–18407

Energy-efficient utilization of bipolar optical forces in nano-optomechanical cavities

Feng Tian, Guangya Zhou, Yu Du, Fook Siong Chau, Jie Deng, Xiaosong Tang, and Ramam Akkipeddi  »View Author Affiliations


Optics Express, Vol. 21, Issue 15, pp. 18398-18407 (2013)
http://dx.doi.org/10.1364/OE.21.018398


View Full Text Article

Enhanced HTML    Acrobat PDF (2400 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Nanoscale all-optical circuits driven by optical forces have broad applications in future communication, computation, and sensing systems. Because human society faces huge challenges of energy saving and emission reduction, it is very important to develop energy-efficient nano-optomechanical devices. Due to their high quality (Q) factors, resonance modes of cavities are capable of generating much larger forces than waveguide modes. Here we experimentally demonstrate the use of resonance modes of double-coupled one-dimensional photonic crystal cavities to generate bipolar optical forces. Attractive and repulsive forces of −6.2 nN and 1.9 nN were obtained with respective launching powers of 0.81 mW and 0.87 mW in the waveguide just before cavities. Supported by flexible nanosprings (spring constant 0.166 N/m), one cavity is pulled to (pushed away from) the other cavity by 37.1 nm (11.4 nm). The shifts of the selected resonance modes of the device are mechanically and thermally calibrated with an integrated nanoelectromechanical system actuator and a temperature-controlled testing platform respectively. Based on these experimentally-obtained relations, probe mode shifts due to the optomechanical effect are decoupled from those due to the thermo-optic effect. Actuated by the third-order even pump mode, the optomechanical shift of the second-order even probe mode is found to be about 2.5 times its thermal shift, indicating a highly efficient conversion of light energy to mechanical energy.

© 2013 OSA

OCIS Codes
(200.4880) Optics in computing : Optomechanics
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(220.4241) Optical design and fabrication : Nanostructure fabrication
(230.4685) Optical devices : Optical microelectromechanical devices

ToC Category:
Optical Devices

History
Original Manuscript: April 9, 2013
Revised Manuscript: June 11, 2013
Manuscript Accepted: June 13, 2013
Published: July 24, 2013

Citation
Feng Tian, Guangya Zhou, Yu Du, Fook Siong Chau, Jie Deng, Xiaosong Tang, and Ramam Akkipeddi, "Energy-efficient utilization of bipolar optical forces in nano-optomechanical cavities," Opt. Express 21, 18398-18407 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-15-18398


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Li, W. H. P. Pernice, and H. X. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics3(8), 464–468 (2009). [CrossRef]
  2. J. Roels, I. De Vlaminck, L. Lagae, B. Maes, D. Van Thourhout, and R. Baets, “Tunable optical forces between nanophotonic waveguides,” Nat. Nanotechnol.4(8), 510–513 (2009). [CrossRef] [PubMed]
  3. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature459(7246), 550–555 (2009). [CrossRef] [PubMed]
  4. G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature462(7273), 633–636 (2009). [CrossRef] [PubMed]
  5. M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechiancal systems via cavity-enhanced optical dipole forces,” Nat. Photonics1(7), 416–422 (2007). [CrossRef]
  6. M. Li, W. H. P. Pernice, and H. X. Tang, “Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides,” Phys. Rev. Lett.103(22), 223901 (2009). [CrossRef] [PubMed]
  7. D. V. Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics4(4), 211–217 (2010). [CrossRef]
  8. J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature478(7367), 89–92 (2011). [CrossRef] [PubMed]
  9. Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitaitons in nano-optomechanical structures,” Nat. Photonics4(4), 236–242 (2010). [CrossRef]
  10. A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature472(7341), 69–73 (2011). [CrossRef] [PubMed]
  11. Y. F. Yu, J. B. Zhang, T. Bourouina, and A. Q. Liu, “Optical-force-induced bistability in nanomachined ring resonator systems,” Appl. Phys. Lett.100(9), 093108 (2012). [CrossRef]
  12. J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a “zipper” photonic crystal optomechanical cavity,” Opt. Express17(5), 3802–3817 (2009). [CrossRef] [PubMed]
  13. M. Li, W. H. P. Pernice, and H. X. Tang, “Broadband all-photonic transduction of nanocantilevers,” Nat. Nanotechnol.4(6), 377–382 (2009). [CrossRef] [PubMed]
  14. M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature462(7269), 78–82 (2009). [CrossRef] [PubMed]
  15. H. Cai, K. J. Xu, A. Q. Liu, Q. Fang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Nano-opto-mechanical actuator driven by gradient optical force,” Appl. Phys. Lett.100(1), 013108 (2012). [CrossRef]
  16. M. L. Povinelli, S. G. Johnson, M. Lonèar, M. Ibanescu, E. J. Smythe, F. Capasso, and J. D. Joannopoulos, “High-Q enhancement of attractive and repulsive optical forces between coupled whispering-gallery- mode resonators,” Opt. Express13(20), 8286–8295 (2005). [CrossRef] [PubMed]
  17. P. B. Deotare, I. Bulu, I. W. Frank, Q. Quan, Y. Zhang, R. Ilic, and M. Loncar, “All optical reconfiguration of optomechanical filters,” Nat Commun3, 846 (2012). [CrossRef] [PubMed]
  18. H. Li, Y. Chen, J. Noh, S. Tadesse, and M. Li, “Multichannel cavity optomechanics for all-optical amplification of radio frequency signals,” Nat Commun3, 1091 (2012). [CrossRef] [PubMed]
  19. J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nat Commun3, 1196 (2012). [CrossRef] [PubMed]
  20. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “Coupled photonic crystal nanobeam cavities,” Appl. Phys. Lett.95(3), 031102 (2009). [CrossRef]
  21. Q. Li, T. Wang, Y. Su, M. Yan, and M. Qiu, “Coupled mode theory analysis of mode-splitting in coupled cavity system,” Opt. Express18(8), 8367–8382 (2010). [CrossRef] [PubMed]
  22. X. Chew, G. Zhou, F. S. Chau, J. Deng, X. Tang, and Y. C. Loke, “Dynamic tuning of an optical resonator through MEMS-driven coupled photonic crystal nanocavities,” Opt. Lett.35(15), 2517–2519 (2010). [CrossRef] [PubMed]
  23. D. A. Fuhrmann, S. M. Thon, H. Kim, D. Bouwmeester, P. M. Petroff, A. Wixforth, and H. J. Krenner, “Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons,” Nat. Photonics5(10), 605–609 (2011). [CrossRef]
  24. X. Sun, J. Zheng, M. Poot, C. W. Wong, and H. X. Tang, “Femtogram doubly clamped nanomechanical resonators embedded in a high-Q two-dimensional photonic crystal nanocavity,” Nano Lett.12(5), 2299–2305 (2012). [CrossRef] [PubMed]
  25. T. Tsuchiya, Y. Ura, K. Sugano, and O. Tabata, “Electrostatic tensile testing device with nanonewton and nanometer resolution and its application to C60 nanowire testing,” J. Microelectromech. Syst.21(3), 523–529 (2012). [CrossRef]
  26. F. Tian, G. Zhou, F. S. Chau, J. Deng, and R. Akkipeddi, “Measurement of coupled cavities' optomechanical coupling coefficient using a nanoelectromechanical actuator,” Appl. Phys. Lett.102(8), 081101 (2013). [CrossRef]
  27. Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett.96(20), 203102 (2010). [CrossRef]
  28. P. Sun and R. M. Reano, “Low-power optical bistability in a free-standing silicon ring resonator,” Opt. Lett.35(8), 1124–1126 (2010). [CrossRef] [PubMed]
  29. Y. F. Yu, J. B. Zhang, T. Bourouina, and A. Q. Liu, “Optical-force-induced bistability in nanomachined ring resonator systems,” Appl. Phys. Lett.100(9), 093108 (2012). [CrossRef]
  30. H. Li, J. W. Noh, Y. Chen, and M. Li, “Enhanced optical forces in integrated hybrid plasmonic waveguides,” Opt. Express21(10), 11839–11851 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited