OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 15 — Jul. 29, 2013
  • pp: 18442–18451

Tetrad phase vortex structure in scattered SPP field produced by silver nano-ring-slit under linearly polarized illumination

Xing Li, Guotao Liang, Zhenhua Li, Chunxiang Liu, and Chuanfu Cheng  »View Author Affiliations

Optics Express, Vol. 21, Issue 15, pp. 18442-18451 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1576 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the tetrad phase vortex structure in the scattered surface plasmon polariton (SPP) field produced by a silver nano-ring-slit with linearly polarized illumination. In the experiment, Mach-Zehnder type interferometer is constructed in which a microscopic objective (MO) is used to collect and image the scattered SPP field, and the phase map is extracted by Fourier transform of the interference intensity. To explain the formation of the tetrad phase vortices in the central area of the ring, we propose an empirical model for the ring-slit-excited SPP source field by trial calculations with the Huygens-Fresnel principle for SPP propagations. It is shown that the azimuthal variation of the amplitude of the source SPP is roughly a half of a constant base, and the variation of the phase is a little greater than π/2. The intensity and the phase distributions of the SSP field calculated with the formulations of this model phenomenologically conform the experimental results.

© 2013 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(290.0290) Scattering : Scattering
(350.5030) Other areas of optics : Phase
(050.4865) Diffraction and gratings : Optical vortices

ToC Category:
Optics at Surfaces

Original Manuscript: June 3, 2013
Revised Manuscript: July 14, 2013
Manuscript Accepted: July 15, 2013
Published: July 24, 2013

Xing Li, Guotao Liang, Zhenhua Li, Chunxiang Liu, and Chuanfu Cheng, "Tetrad phase vortex structure in scattered SPP field produced by silver nano-ring-slit under linearly polarized illumination," Opt. Express 21, 18442-18451 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  3. E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006). [CrossRef] [PubMed]
  4. S. A. Maier, Plamonics: Fundamentals and Applications (Springer, 2006).
  5. S. A. Maier, M. D. Friedman, P. E. Barclay, and O. Painter, “Experimental demonstration of fiber-accessible metal nanoparticle plasmon waveguides for planar energy guiding and sensing,” Appl. Phys. Lett.86(7), 071103 (2005). [CrossRef]
  6. A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett.91(18), 183901 (2003). [CrossRef] [PubMed]
  7. Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett.5(9), 1726–1729 (2005). [CrossRef] [PubMed]
  8. G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized Light,” Nano Lett.9(5), 2139–2143 (2009). [CrossRef] [PubMed]
  9. J. M. Steele, Z. W. Liu, Y. Wang, and X. Zhang, “Resonant and non-resonant generation and focusing of surface plasmons with circular gratings,” Opt. Express14(12), 5664–5670 (2006). [CrossRef] [PubMed]
  10. A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon polariton Mach–Zehnder Interferometer and oscillation fringes,” Plasmonics1(2–4), 141–145 (2006). [CrossRef]
  11. H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett.81(10), 1762–1764 (2002). [CrossRef]
  12. K. J. Chau, M. Johnson, and A. Y. Elezzabi, “Electron-spin-dependent terahertz light transport in spintronic-plasmonic Media,” Phys. Rev. Lett.98(13), 133901 (2007). [CrossRef] [PubMed]
  13. I. I. Smolyaninov, C. C. Davis, V. N. Smolyaninova, D. Schaefer, J. Elliott, and A. V. Zayats, “Plasmon-induced magnetization of metallic nanostructures,” Phys. Rev. B71(3), 035425 (2005). [CrossRef]
  14. K. T. Gahagan and G. A. Swartzlander., “Simultaneous trapping of low-index and high-index microparticles observed with an optical-vortex trap,” J. Opt. Soc. Am. B16(4), 533 (1999). [CrossRef]
  15. Y. S. Kivshar and B. Luther-Davies, “Dark optical solitons: physics and applications,” Phys. Rep.298(2–3), 81–197 (1998). [CrossRef]
  16. A. P. Liu, G. H. Rui, X. F. Ren, Q. W. Zhan, G. C. Guo, and G. Guo, “Encoding photonic angular momentum information onto surface plasmon polaritons with plasmonic lens,” Opt. Express20(22), 24151–24159 (2012). [CrossRef] [PubMed]
  17. J. Scheuer and M. Orenstein, “Optical vortices crystals: spontaneous generation in nonlinear semiconductor microcavities,” Science285(5425), 230–233 (1999). [CrossRef] [PubMed]
  18. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature412(6844), 313–316 (2001). [CrossRef] [PubMed]
  19. Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the Spin-Based Plasmonic Effect in Nanoscale Structures,” Phys. Rev. Lett.101(4), 043903 (2008). [CrossRef] [PubMed]
  20. H. Kim, J. Park, S. W. Cho, S. Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett.10(2), 529–536 (2010). [CrossRef] [PubMed]
  21. S. W. Cho, J. Park, S. Y. Lee, H. Kim, and B. Lee, “Coupling of spin and angular momentum of light in plasmonic vortex,” Opt. Express20(9), 10083–10094 (2012). [CrossRef] [PubMed]
  22. P. S. Tan, G. H. Yuan, Q. Wang, N. Zhang, D. H. Zhang, and X. C. Yuan, “Phase singularity of surface plasmon polaritons generated by optical vortices,” Opt. Lett.36(16), 3287–3289 (2011). [CrossRef] [PubMed]
  23. L. Aigouy, P. Lalanne, H. T. Liu, G. Julié, V. Mathet, and M. Mortier, “Near-field scattered by a single nanoslit in a metal film,” Appl. Opt.46(36), 8573–8577 (2007). [CrossRef] [PubMed]
  24. A. Archambault, T. V. Teperik, F. Marquier, and J. J. Greffet, “Surface plasmon Fourier optics,” Phys. Rev. B79(19), 195414 (2009). [CrossRef]
  25. T. V. Teperik, A. Archambault, F. Marquier, and J. J. Greffet, “Huygens-Fresnel principle for surface plasmons,” Opt. Express17(20), 17483–17490 (2009). [CrossRef] [PubMed]
  26. X. Y. Yang, H. T. Liu, and P. Lalanne, “Cross conversion between surface plasmon polaritons and quasicylindrical waves,” Phys. Rev. Lett.102(15), 153903 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited