OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 15 — Jul. 29, 2013
  • pp: 18501–18508

Controlling ripples’ periodicity using temporally delayed femtosecond laser double pulses

M. Barberoglou, D. Gray, E. Magoulakis, C. Fotakis, P. A. Loukakos, and E. Stratakis  »View Author Affiliations


Optics Express, Vol. 21, Issue 15, pp. 18501-18508 (2013)
http://dx.doi.org/10.1364/OE.21.018501


View Full Text Article

Enhanced HTML    Acrobat PDF (2174 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate the capability to control the ripple periodicity on polycrystalline ZnO films by applying temporally delayed femtosecond double pulses. It is shown that there is a characteristic pulse separation time for which one can switch from low- to high- spatial-frequency ripple formation. Results are interpreted based on the relation of the characteristic delay time with the electron-phonon relaxation time of the material. Our results indicate that temporal pulse shaping can be advantageously used as a mean to control the periodic nanoripples’ formation and thus the outcome of laser assisted nanofabrication process, which is desirable for the applications of nanopatterned transparent semiconductors.

© 2013 OSA

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(320.2250) Ultrafast optics : Femtosecond phenomena
(320.5540) Ultrafast optics : Pulse shaping
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Laser Microfabrication

History
Original Manuscript: March 22, 2013
Revised Manuscript: May 21, 2013
Manuscript Accepted: May 21, 2013
Published: July 25, 2013

Citation
M. Barberoglou, D. Gray, E. Magoulakis, C. Fotakis, P. A. Loukakos, and E. Stratakis, "Controlling ripples’ periodicity using temporally delayed femtosecond laser double pulses," Opt. Express 21, 18501-18508 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-15-18501


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Korte, S. Nolte, B. N. Chichkov, T. Bauer, G. Kamlage, T. Wagner, C. Fallnich, and H. Welling, “Far-field and near-field material processing with femtosecond laser pulses,” Appl Phys A-Mater69, S7–S11 (1999).
  2. D. Bäuerle, Laser Processing and Chemistry (Springer, 1986).
  3. S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412(6848), 697–698 (2001). [CrossRef] [PubMed]
  4. M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3(7), 444–447 (2004). [CrossRef] [PubMed]
  5. D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: A comparative study on ZnO,” J. Appl. Phys.105(3), 034908 (2009). [CrossRef]
  6. M. Huang, F. L. Zhao, Y. Cheng, N. S. Xu, and Z. Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano3(12), 4062–4070 (2009). [CrossRef] [PubMed]
  7. E. V. Barmina, E. Stratakis, C. Fotakis, and G. A. Shafeev, “Generation of nanostructures on metals by laser ablation in liquids: new results,” Quantum Electron.40(11), 1012–1020 (2010). [CrossRef]
  8. A. Y. Vorobyev, V. S. Makin, and C. L. Guo, “Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals,” J. Appl. Phys.101(3), 034903 (2007). [CrossRef]
  9. G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B86(11), 115316 (2012). [CrossRef]
  10. Y. Shimotsuma, P. G. Kazansky, J. R. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003). [CrossRef] [PubMed]
  11. M. Bolle and S. Lazare, “Characterization of submicrometer periodic structures produced on polymer surfaces with low-fluence ultraviolet-laser radiation,” J. Appl. Phys.73(7), 3516–3524 (1993). [CrossRef]
  12. M. Olbrich, E. Rebollar, J. Heitz, I. Frischauf, and C. Romanin, “Electroporation chip for adherent cells on photochemically modified polymer surfaces,” Appl. Phys. Lett.92(1), 013901 (2008). [CrossRef]
  13. A. Y. Vorobyev, V. S. Makin, and C. L. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett.102(23), 234301 (2009). [CrossRef] [PubMed]
  14. E. V. Barmina, A. A. Serkov, E. Stratakis, C. Fotakis, V. N. Stolyarov, I. N. Stolyarov, and G. A. Shafeev, “Nano-textured W shows improvement of thermionic emission properties,” Appl Phys A-Mater106(1), 1–4 (2012). [CrossRef]
  15. R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, I. V. Hertel, and E. E. B. Campbell, “Laser ablation of dielectrics with temporally shaped femtosecond pulses,” Appl. Phys. Lett.80(3), 353–355 (2002). [CrossRef]
  16. R. Stoian, A. Mermillod-Blondin, S. W. Winkler, A. Rosenfeld, I. V. Hertel, M. Spyridaki, E. Koudoumas, P. Tzanetakis, C. Fotakis, I. M. Burakov, and N. M. Bulgakova, “Temporal pulse manipulation and consequences for ultrafast laser processing of materials,” Opt. Eng.44(5), 051106 (2005). [CrossRef]
  17. A. Klini, P. A. Loukakos, D. Gray, A. Manousaki, and C. Fotakis, “Laser Induced Forward Transfer of metals by temporally shaped femtosecond laser pulses,” Opt. Express16(15), 11300–11309 (2008). [CrossRef] [PubMed]
  18. A. C. Forsman, P. S. Banks, M. D. Perry, E. M. Campbell, A. L. Dodell, and M. S. Armas, “Double-pulse machining as a technique for the enhancement of material removal rates in laser machining of metals,” J. Appl. Phys.98(3), 033302 (2005). [CrossRef]
  19. M. E. Povarnitsyn, T. E. Itina, K. V. Khishchenko, and P. R. Levashov, “Suppression of ablation in femtosecond double-pulse experiments,” Phys. Rev. Lett.103(19), 195002 (2009). [CrossRef] [PubMed]
  20. V. Schmidt, W. Husinsky, and G. Betz, “Ultrashort laser ablation of metals: pump-probe experiments, the role of ballistic electrons and the two-temperature model,” Appl. Surf. Sci.197, 145–155 (2002). [CrossRef]
  21. A. Semerok and C. Dutouquet, “Ultrashort double pulse laser ablation of metals,” Thin Solid Films453, 501–505 (2004). [CrossRef]
  22. M. Li, S. Menon, J. P. Nibarger, and G. N. Gibson, “Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics,” Phys. Rev. Lett.82(11), 2394–2397 (1999). [CrossRef]
  23. I. H. Chowdhury, X. F. Xu, and A. M. Weiner, “Ultrafast double-pulse ablation of fused silica,” Appl. Phys. Lett.86(15), 151110 (2005). [CrossRef]
  24. N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, and E. E. B. Campbell, “Electronic transport and consequences for material removal in ultrafast pulsed laser ablation of materials,” Phys. Rev. B69(5), 054102 (2004). [CrossRef]
  25. P. F. Carcia, R. S. McLean, and M. H. Reilly, “High-performance ZnO thin-film transistors on gate dielectrics grown by atomic layer deposition,” Appl. Phys. Lett.88(12), 123509 (2006). [CrossRef]
  26. R. L. Hoffman, B. J. Norris, and J. F. Wager, “ZnO-based transparent thin-film transistors,” Appl. Phys. Lett.82(5), 733–735 (2003). [CrossRef]
  27. D. K. Hwang, M. S. Oh, J. H. Lim, and S. J. Park, “ZnO thin films and light-emitting diodes,” J. Phys. D Appl. Phys.40(22), R387–R412 (2007). [CrossRef]
  28. Q. M. Pan, L. M. Qin, J. Liu, and H. B. Wang, “Flower-like ZnO-NiO-C films with high reversible capacity and rate capability for lithium-ion batteries,” Electrochim. Acta55(20), 5780–5785 (2010). [CrossRef]
  29. J. B. Chu, S. M. Huang, D. W. Zhang, Z. Q. Bian, X. D. Li, Z. Sun, and X. J. Yin, “Nanostructured ZnO thin films by chemical bath deposition in basic aqueous ammonia solutions for photovoltaic applications,” Appl. Phys., A Mater. Sci. Process.95(3), 849–855 (2009). [CrossRef]
  30. R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag.4, 396–402 (1902).
  31. C. B. Li, D. H. Feng, T. Q. Jia, H. Y. Sun, X. X. Li, S. Z. Xu, X. F. Wang, and Z. Z. Xu, “Ultrafast dynamics in ZnO thin films irradiated by femtosecond lasers,” Solid State Commun.136(7), 389–394 (2005). [CrossRef]
  32. M. A. M. Versteegh, T. Kuis, H. T. C. Stoof, and J. I. Dijkhuis, “Ultrafast screening and carrier dynamics in ZnO: Theory and experiment,” Phys. Rev. B84(3), 035207 (2011). [CrossRef]
  33. E. Koudoumas, M. Spyridaki, R. Stoian, A. Rosenfeld, P. Tzanetakis, I. V. Hertel, and C. Fotakis, “Influence of pulse temporal manipulation on the properties of laser ablated Si ion beams,” Thin Solid Films453, 372–376 (2004). [CrossRef]
  34. R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, and I. V. Hertel, “Dynamic temporal pulse shaping in advanced ultrafast laser material processing,” Appl Phys A-Mater77, 265–269 (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

Supplementary Material


» Media 1: JPG (1145 KB)     
» Media 2: JPG (1232 KB)     
» Media 3: JPG (1023 KB)     
» Media 4: JPG (777 KB)     
» Media 5: JPG (553 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited