OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 15 — Jul. 29, 2013
  • pp: 18509–18524

Parametric model of the Mueller matrix of a Spectralon white reflectance standard deduced by polar decomposition techniques

Morten Kildemo, Jérôme Maria, Pål G. Ellingsen, and Lars M. S. Aas  »View Author Affiliations

Optics Express, Vol. 21, Issue 15, pp. 18509-18524 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2386 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Decomposition methods have been applied to in-plane Mueller matrix ellipsometric scattering data of the Spectralon reflectance standard. Data were measured at the wavelengths 532 nm and 1500 nm, using an achromatic optimal Mueller matrix scatterometer applying a photomultiplier tube and a high gain InGaAs detector for the two wavelengths. A parametric model with physical significance was deduced through analysis of the product decomposed matrices. It is found that when the data are analyzed as a function of the scattering angle, similar to particle scattering, the matrix elements are largely independent of incidence angle. To the first order, we propose that a Guassian lineshape is appropriate to describe the polarization index, while the decomposed diagonal elements of the retardance matrix have a form resembling Rayleigh single scattering. New models are proposed for the off diagonal elements of the measured Mueller matrix.

© 2013 OSA

OCIS Codes
(120.2130) Instrumentation, measurement, and metrology : Ellipsometry and polarimetry
(290.1350) Scattering : Backscattering
(290.1990) Scattering : Diffusion
(290.5820) Scattering : Scattering measurements
(290.5855) Scattering : Scattering, polarization

ToC Category:

Original Manuscript: April 11, 2013
Revised Manuscript: July 11, 2013
Manuscript Accepted: July 11, 2013
Published: July 26, 2013

Virtual Issues
Vol. 8, Iss. 8 Virtual Journal for Biomedical Optics

Morten Kildemo, Jérôme Maria, Pål G. Ellingsen, and Lars M. S. Aas, "Parametric model of the Mueller matrix of a Spectralon white reflectance standard deduced by polar decomposition techniques," Opt. Express 21, 18509-18524 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Ø. Svensen, M. Kildemo, J. Maria, J. J. Stamnes, and Ø. Frette, “Mueller matrix measurements and modeling pertaining to spectralon white reflectance standards,” Opt. Express20, 15045–15053 (2012). [CrossRef] [PubMed]
  2. T. A. Germer and H. J. Patrick, “Mueller matrix bidirectional reflectance distribution function measurements and modeling of diffuse reflectance standards,” Proc. SPIE8160, 81600D (2011). [CrossRef]
  3. D. A. Haner, B. T. McGuckin, and C. J. Bruegge, “Polarization characteristics of spectralon illuminated by coherent light,” Appl. Opt.38, 6350–6356 (1999). [CrossRef]
  4. A. Bhandari, B. Hamre, Ø. Frette, L. Zhao, J. J. Stamnes, and M. Kildemo, “Bidirectional reflectance distribution function of spectralon white reflectance standard illuminated by incoherent unpolarized and plane-polarized light,” Appl. Opt.50, 2431–2442 (2011). [CrossRef] [PubMed]
  5. T. A. Leskova, P. A. Letnes, A. A. Maradudin, T. Nordam, and I. Simonsen, “The scattering of light from two-dimensional randomly rough surfaces,” Proc. SPIE8172, 817208 (2011).
  6. I. Simonsen, A. A. Maradudin, and T. A. Leskova, “Scattering of electromagnetic waves from two-dimensional randomly rough penetrable surfaces,” Phys. Rev. Lett.104, 223904 (2010). [CrossRef] [PubMed]
  7. I. Simonsen, A. A. Maradudin, and T. A. Leskova, “Scattering of electromagnetic waves from two-dimensional randomly rough perfectly conducting surfaces: The full angular intensity distribution,” Phys. Rev. A81, 013806 (2010). [CrossRef]
  8. N. Ghosh, J. Soni, M. Wood, M. Wallenberg, and I. Vitkin, “Mueller matrix polarimetry for the characterization of complex random medium like biological tissues,” Pramana75, 1071–1086 (2010). [CrossRef]
  9. N. Ghosh and I. A. Vitkin, “Tissue polarimetry: concepts, challenges, applications, and outlook,” J. Biomed. Opt.16, 110801 (2011). [CrossRef] [PubMed]
  10. A. Pierangelo, S. Manhas, A. Benali, M. R. Antonelli, T. Novikova, P. Validire, B. Gayet, and A. De Martino, “Use of mueller polarimetric imaging for the staging of human colon cancer,” Proc. SPIE7895, 78950E (2011). [CrossRef]
  11. V. V. Tuchin, L. V. Wang, and D. A. Zimnyakov, Optical Polarization in Biomedical Applications (Berlin Heidelberg, 2006).
  12. S. Kumar, H. Purwar, R. Ossikovski, I. A. Vitkin, and N. Ghosh, “Comparative study of differential matrix and extended polar decomposition formalisms for polarimetric characterization of complex tissue-like turbid media,” Journal of Biomedical Optics17, 105006–105006 (2012). [CrossRef] [PubMed]
  13. R. Ossikovski, A. D. Martino, and S. Guyot, “Forward and reverse product decompositions of depolarizing mueller matrices,” Opt. Lett.32, 689–691 (2007). [CrossRef] [PubMed]
  14. R. Ossikovski, M. Anastasiadou, S. Ben Hatit, E. Garcia-Caurel, and A. De Martino, “Depolarizing mueller matrices: how to decompose them?” Phys. Status Solidi (a)205, 720–727 (2008). [CrossRef]
  15. R. Ossikovski, “Analysis of depolarizing mueller matrices through a symmetric decomposition,” J. Opt. Soc. Am. A26, 1109–1118 (2009). [CrossRef]
  16. R. Ossikovski, “Differential matrix formalism for depolarizing anisotropic media,” Opt. Lett.36, 2330–2332 (2011). [CrossRef] [PubMed]
  17. S.-Y. Lu and R. A. Chipman, “Interpretation of mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A13, 1106–1113 (1996). [CrossRef]
  18. S. Manhas, M. K. Swami, P. Buddhiwant, N. Ghosh, P. K. Gupta, and J. Singh, “Mueller matrix approach for determination of optical rotation in chiral turbid media in backscattering geometry,” Opt. Express14, 190–202 (2006). [CrossRef] [PubMed]
  19. N. Ortega-Quijano and J. L. Arce-Diego, “Mueller matrix differential decomposition.” Opt. lett.36, 1942–4 (2011). [CrossRef] [PubMed]
  20. H. D. Noble and R. a. Chipman, “Mueller matrix roots algorithm and computational considerations.” Opt. Express20, 17–31 (2012). [CrossRef] [PubMed]
  21. H. Noble, S. McClain, and R. Chipman, “Mueller matrix roots depolarization parameters,” Appl. Optics51, 735–744 (2012). [CrossRef]
  22. C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles Interscience (J. Wiley & Sons, New York, 1983).
  23. P. Hauge, R. Muller, and C. Smith, “Conventions and formulas for using the mueller-stokes calculus in ellipsometry,” Surf. Sci.96, 81–107 (1980). [CrossRef]
  24. R. Azzam and N. Bashara, Ellipsometry and Polarized Light (North Holland, 1977).
  25. J. J. Gil and E. Bernabeu, “A depolarization criterion in mueller matrices,” Opt. Acta32, 259–261 (1985). [CrossRef]
  26. S. R. Cloude, “Conditions for the physical realisability of matrix operators in polarimetry,” Proc. SPIE1166, 177–185 (1989). [CrossRef]
  27. F. Stabo-Eeg, M. Kildemo, I. S. Nerbø, and M. Lindgren, “Well-conditioned multiple laser mueller matrix ellipsometer,” Opt. Eng.47, 073604–073604–9 (2008). [CrossRef]
  28. R. Ossikovski, M. Anastasiadou, and A. D. Martino, “Product decompositions of depolarizing mueller matrices with negative determinants,” Opt. Commun.281, 2406–2410 (2008). [CrossRef]
  29. R. L. White, “Polarization in reflection nebulae. I - Scattering properties of interstellar grains,” Astrophys. J.229, 954–961 (1979). [CrossRef]
  30. A. Erbe, K. Tauer, and R. Sigel, “Ellipsometric light scattering for the characterization of thin layers on dispersed colloidal particles,” Phys. Rev. E73, 031406 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited