OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 15 — Jul. 29, 2013
  • pp: 18558–18571

Understanding the contribution of mode area and slow light to the effective Kerr nonlinearity of waveguides

V. Shahraam Afshar, T. M. Monro, and C. Martijn de Sterke  »View Author Affiliations


Optics Express, Vol. 21, Issue 15, pp. 18558-18571 (2013)
http://dx.doi.org/10.1364/OE.21.018558


View Full Text Article

Enhanced HTML    Acrobat PDF (778 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We resolve the ambiguity in existing definitions of the effective area of a waveguide mode that have been reported in the literature by examining which definition leads to an accurate evaluation of the effective Kerr nonlinearity. We show that the effective nonlinear coefficient of a waveguide mode can be written as the product of a suitable average of the nonlinear coefficients of the waveguide’s constituent materials, the mode’s group velocity and a new suitably defined effective mode area. None of these parameters on their own completely describe the strength of the nonlinear effects of a waveguide.

© 2013 osa

OCIS Codes
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(130.4310) Integrated optics : Nonlinear
(190.3270) Nonlinear optics : Kerr effect
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Nonlinear Optics

History
Original Manuscript: June 10, 2013
Revised Manuscript: July 12, 2013
Manuscript Accepted: July 14, 2013
Published: July 26, 2013

Citation
V. Shahraam Afshar, T. M. Monro, and C. Martijn de Sterke, "Understanding the contribution of mode area and slow light to the effective Kerr nonlinearity of waveguides," Opt. Express 21, 18558-18571 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-15-18558


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge University, 1990). [CrossRef]
  2. P. Agrawal, Nonlinear Fiber Optics (Academic press, 2007).
  3. I. D. Rukhlenko, M. Premaratne, S. Member, and G. P. Agrawal, “Nonlinear silicon photonics : Analytical tools,” IEEE J. Selec. Quantum Electron.16, 200–215 (2010). [CrossRef]
  4. I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, “Effective mode area and its optimization in silicon-nanocrystal waveguides,” Opt. Lett.37, 2295–2297 (2012). [CrossRef] [PubMed]
  5. M. Soljačić, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B19, 2052–2059 (2002). [CrossRef]
  6. T. Baba, “Slow light in photonic crystals,” Nature Photonics2, 465–473 (2008). [CrossRef]
  7. B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nature Photonics3, 206–210 (2009). [CrossRef]
  8. N.-C. Panoiu, J. McMillan, and C. W. Wong, “Theoretical analysis of pulse dynamics in silicon photonic crystal wire waveguides,” IEEE J. Selec. Quantum Electron.16, 257–266 (2010). [CrossRef]
  9. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett.29, 1209–1211 (2004). [CrossRef] [PubMed]
  10. O. Boyraz, P. Koonath, V. Raghunathan, and B. Jalali, “All optical switching and continuum generation in silicon waveguides,” Opt. Express12, 4094–4102 (2004). [CrossRef] [PubMed]
  11. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nature Photonics3, 216–219 (2009). [CrossRef]
  12. W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood., “Tunable wavelength conversion by xpm in a silicon nanowire, and the potential for xpm-multicasting,” J. Lightwave Technol.28, 2499–2511 (2010). [CrossRef]
  13. R. K. W. Lau, M. Ménard, Y. Okawachi, M. A. Foster, A. C. Turner-Foster, R. Salem, M. Lipson, and A. L. Gaeta, “Continuous-wave mid-infrared frequency conversion in silicon nanowaveguides,” Opt. Lett.36, 1263–1265 (2011). [CrossRef] [PubMed]
  14. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nature Photonics4, 535–544 (2010). [CrossRef]
  15. M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davis, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nature Photonics3, 139–143 (2009). [CrossRef]
  16. X. Gai, T. Han, A. Prasad, S. Madden, D.-Y. Choi, R. Wang, D. Bulla, and B. Luther-Davies, “Progress in optical waveguides fabricated from chalcogenide glasses,” Opt. Express18, 26635–26646 (2010). [CrossRef] [PubMed]
  17. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nature Photonics5, 141–148 (2011).
  18. P. Petropoulos, T. M. Monro, W. Belardi, K. Furusawa, J. H. Lee, and D. J. Richardson, “2R-regenerative all-optical switch based on a highly nonlinear holey fiber,” Opt. Lett.26, 1233–1235 (2001). [CrossRef]
  19. H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express12, 5082 (2004). [CrossRef] [PubMed]
  20. V. S. Afshar, W. Q. Zhang, H. Ebendorff-Heidepriem, and T. M. Monro, “Small core optical waveguides are more nonlinear than expected: experimental confirmation,” Opt. Lett.34, 3577–3579 (2009). [CrossRef]
  21. G. Qin, X. Yan, C. Kito, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Highly nonlinear tellurite microstructured fibers for broadband wavelength conversion and flattened supercontinuum generation,” J. Appl. Phys.107, 043108 (2010). [CrossRef]
  22. F. Poletti, X. Feng, G. M. Ponzo, M. N. Petrovich, W. H. Loh, and D. J. Richardson, “All-solid highly nonlinear singlemode fibers with a tailored dispersion profile,” Opt. Express19, 66–80 (2011). [CrossRef] [PubMed]
  23. S. Maier, “Plasmonics: Metal nanostructures for subwavelength photonic devices,” IEEE J. Selec. Quantum Electron.12, 1214–1220 (2006). [CrossRef]
  24. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nature Photonics4, 83–91 (2010). [CrossRef]
  25. M. Foster, K. Moll, and A. Gaeta, “Optimal waveguide dimensions for nonlinear interactions.” Opt. Express12, 2880–7 (2004). [CrossRef] [PubMed]
  26. P. Sanchis, J. Blasco, S. Member, A. Martínez, and J. Martí, “Design of silicon-based slot waveguide configurations for optimum nonlinear performance,” J. Lightwave Technol.25, 1298–1305 (2007). [CrossRef]
  27. V. S. Afshar and T. M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part i: Kerr nonlinearity,” Opt. Express17, 2298–2318 (2009). [CrossRef]
  28. J. Lægsgaard, “Modeling of nonlinear propagation in fiber tapers,” J. Opt. Soc. Am. B29, 3183–3191 (2012). [CrossRef]
  29. X. Chen, N. C. Panoiu, and R. M. Osgood, “Theory of raman-mediated pulsed amplification in silicon-wire waveguides,” IEEE J. Quantum Electron.42, 160–170 (2006). [CrossRef]
  30. N. Bhat and J. Sipe, “Optical pulse propagation in nonlinear photonic crystals,” Phys. Rev. E64, 056604 (2001). [CrossRef]
  31. M. Santagiustina, C. G. Someda, G. Vadalà, S. Combrié, and A. D. Rossi, “Theory of slow light enhanced four-wave mixing in photonic crystal waveguides,” Opt. Express18, 21024–21029 (2010). [CrossRef] [PubMed]
  32. J. F. McMillan, M. Yu, D.-L. Kwong, and C. W. Wong, “Observation of spontaneous raman scattering in silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett.93, 251105 (2008). [CrossRef]
  33. M. Bahl, N.-C. Panoiu, and R. M. Osgood, “Nonlinear optical effects in a two-dimensional photonic crystal containing one-dimensional kerr defects,” Phys. Rev. E67, 056604 (2003). [CrossRef]
  34. D. Michaelis, U. Peschel, C. Wächter, and A. Bräuer, “Reciprocity theorem and perturbation theory for photonic crystal waveguides,” Phys. Rev. E68, 065601 (2003). [CrossRef]
  35. C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Selec. Quantum Electron.16, 344–356 (2010). [CrossRef]
  36. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1995).
  37. J. A. Buck, Fudamentals of Optical Fibers (John Wiley & Sons, 2004).
  38. P. Petropoulos, H. Ebendorff-Heidepriem, V. Finazzi, R.C. Moore, K. Frampton, D.J. Richardson, and T.M. Monro, “Highly nonlinear and anomalously dispersive lead silicate glass holey fibers,” Opt. Express11, 3568–3573 (2003). [CrossRef] [PubMed]
  39. E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. E. Lamont, D. I. Yeom, and B. J. Eggleton, “Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3chalcogenide fiber tapers,” Opt. Express15, 10324–10329 (2007). [CrossRef]
  40. T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Ann. Rev. of Mater. Res.36, 467–495 (2006). [CrossRef]
  41. W. Q. Zhang, V. S. Afshar, and T. M. Monro, “A genetic algorithm based approach to fiber design for high coherence and large bandwidth supercontinuum generation,” Opt. Express17, 19311–19327 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited