OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 15 — Jul. 29, 2013
  • pp: 18582–18591

Spectral broadening in anatase titanium dioxide waveguides at telecommunication and near-visible wavelengths

Christopher C. Evans, Katia Shtyrkova, Jonathan D. B. Bradley, Orad Reshef, Erich Ippen, and Eric Mazur  »View Author Affiliations


Optics Express, Vol. 21, Issue 15, pp. 18582-18591 (2013)
http://dx.doi.org/10.1364/OE.21.018582


View Full Text Article

Enhanced HTML    Acrobat PDF (2631 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We observe spectral broadening of femtosecond pulses in single-mode anatase-titanium dioxide (TiO2) waveguides at telecommunication and near-visible wavelengths (1565 and 794 nm). By fitting our data to nonlinear pulse propagation simulations, we quantify nonlinear optical parameters around 1565 nm. Our fitting yields a nonlinear refractive index of 0.16 × 10−18 m2/W, no two-photon absorption, and stimulated Raman scattering from the 144 cm−1 Raman line of anatase with a gain coefficient of 6.6 × 10−12 m/W. Additionally, we report on asymmetric spectral broadening around 794 nm. The wide wavelength applicability and negligible two-photon absorption of TiO2 make it a promising material for integrated photonics.

© 2013 OSA

OCIS Codes
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(190.4400) Nonlinear optics : Nonlinear optics, materials
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:
Nonlinear Optics

History
Original Manuscript: June 25, 2013
Revised Manuscript: July 18, 2013
Manuscript Accepted: July 19, 2013
Published: July 26, 2013

Citation
Christopher C. Evans, Katia Shtyrkova, Jonathan D. B. Bradley, Orad Reshef, Erich Ippen, and Eric Mazur, "Spectral broadening in anatase titanium dioxide waveguides at telecommunication and near-visible wavelengths," Opt. Express 21, 18582-18591 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-15-18582


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature431, 1081–1084 (2004). [CrossRef] [PubMed]
  2. P. P. Absil, J. V. Hryniewicz, B. E. Little, P. S. Cho, R. A. Wilson, L. G. Joneckis, and P. T. Ho, “Wavelength conversion in GaAs micro-ring resonators,” Opt. Lett.25, 554–556 (2000). [CrossRef]
  3. M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express15, 12949–12958 (2007). [CrossRef] [PubMed]
  4. V. G. Ta’eed, N. J. Baker, L. B. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express15, 9205–9221 (2007). [CrossRef]
  5. A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Kerr combs with selectable central frequency,” Nat. Photon5, 293–296 (2011). [CrossRef]
  6. Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett.36, 3398–3400 (2011). [CrossRef] [PubMed]
  7. M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “Silicon-based monolithic optical frequency comb source,” Opt. Express19, 14233–14239 (2011). [CrossRef] [PubMed]
  8. O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express12, 5269–5273 (2004). [CrossRef] [PubMed]
  9. C. Xiong, L. G. Helt, A. C. Judge, G. D. Marshall, M. J. Steel, J. E. Sipe, and B. J. Eggleton, “Quantum-correlated photon pair generation in chalcogenide As2S3waveguides,” Opt. Express18, 16206–16216 (2010). [CrossRef] [PubMed]
  10. S. Azzini, D. Grassani, M. J. Strain, M. Sorel, L. G. Helt, J. E. Sipe, M. Liscidini, M. Galli, and D. Bajoni, “Ultra-low power generation of twin photons in a compact silicon ring resonator,” Opt. Express20, 23100–23107 (2012). [CrossRef] [PubMed]
  11. M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, “Double tungstate lasers: From bulk toward on-chip integrated waveguide devices,” IEEE J. Sel. Top. Quantum Electron.13, 661–671 (2007). [CrossRef]
  12. F. Koyama, “Recent advances of VCSEL photonics,” J. Lightwave Technol24, 4502–4513 (2006). [CrossRef]
  13. J. W. Hall and A. Pollard, “Near-infrared spectrophotometry: a new dimension in clinical chemistry,” Clin. Chem.38, 1623–1631 (1992). [PubMed]
  14. R. W. Boyd and J. E. Heebner, “Sensitive disk resonator photonic biosensor,” Appl. Opt.40, 5742–5747 (2001). [CrossRef]
  15. H. Obrig and A. Villringer, “Beyond the visible—imaging the human brain with light,” J. Cerebr. Blood F. Met.23, 1–18 (2003). [CrossRef]
  16. J.-C. G. Bunzli and C. Piguet, “Taking advantage of luminescent lanthanide ions,” Chem. Soc. Rev.34, 1048–1077 (2005). [CrossRef] [PubMed]
  17. R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photon3, 696–705 (2009). [CrossRef]
  18. B. S. Wherrett, “Scaling rules for multiphoton interband absorption in semiconductors,” J. Opt. Soc. Am. B1, 67–72 (1984). [CrossRef]
  19. M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett.65, 96 (1990). [CrossRef] [PubMed]
  20. M. Dinu, “Dispersion of phonon-assisted nonresonant third-order nonlinearities,” IEEE J. Quantum Electron.39, 1498–1503 (2003). [CrossRef]
  21. M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett.82, 2954–2956 (2003). [CrossRef]
  22. J. R. M. Osgood, N. C. Panoiu, J. I. Dadap, X. Liu, X. Chen, I. W. Hsieh, E. Dulkeith, W. M. Green, and Y. A. Vlasov, “Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires,” Adv. Opt. Photon.1, 162–235 (2009). [CrossRef]
  23. G. I. Stegeman, “Material figures of merit and implications to all-optical waveguide switching,” Proc. SPIE1852, 75–89 (1993). [CrossRef]
  24. P. Koonath, D. R. Solli, and B. Jalali, “Limiting nature of continuum generation in silicon,” Appl. Phys. Lett.93, 3 (2008). [CrossRef]
  25. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photon5, 141–148 (2011).
  26. J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron.33, 341–348 (1997). [CrossRef]
  27. G. A. Siviloglou, S. Suntsov, R. El-Ganainy, R. Iwanow, G. I. Stegeman, D. N. Christodoulides, R. Morandotti, D. Modotto, A. Locatelli, C. De Angelis, F. Pozzi, C. R. Stanley, and M. Sorel, “Enhanced third-order nonlinear effects in optical AlGaAs nanowires,” Opt. Express14, 9377–9384 (2006). [CrossRef] [PubMed]
  28. S. Combrie, Q. V. Tran, A. De Rossi, C. Husko, and P. Colman, “High quality GaInP nonlinear photonic crystals with minimized nonlinear absorption,” Appl. Phys. Lett.95, 221108–3 (2009). [CrossRef]
  29. J. Pascual, J. Camassel, and H. Mathieu, “Fine structure in the intrinsic absorption edge of TiO2,” Phys. Rev. B18, 5606 (1978). [CrossRef]
  30. D. Reyes-Coronado, G. Rodrguez-Gattorno, M. E. Espinosa-Pesqueira, C. Cab, R. d. Coss, and G. Oskam, “Phase-pure TiO2nanoparticles: anatase, brookite and rutile,” Nanotechnology19, 145605 (2008). [CrossRef] [PubMed]
  31. C. C. Evans, J. D. B. Bradley, E. A. Mart-Panameo, and E. Mazur, “Mixed two- and three-photon absorption in bulk rutile (TiO2) around 800 nm,” Opt. Express20, 3118–3128 (2012). [CrossRef] [PubMed]
  32. R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B39, 3337 (1989). [CrossRef]
  33. T. Hashimoto, T. Yoko, and S. Sakka, “Sol-gel preparation and third-order nonlinear optical properties of TiO2thin films,” B. Chem. Soc. Jpn67, 653–660 (1994). [CrossRef]
  34. S. Friberg and P. Smith, “Nonlinear optical glasses for ultrafast optical switches,” IEEE J. Quantum Electron.23, 2089–2094 (1987). [CrossRef]
  35. H. A. Castillo-Matadamas, R. M. Lima-Garca, and R. Quintero-Torres, “Ultrafast nonlinear optical properties of TiO2nanoclusters at 850 nm,” J. Mod. Opt.57, 1100–1106 (2010). [CrossRef]
  36. D. Milam, “Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica,” Appl. Opt.37, 546–550 (1998). [CrossRef]
  37. S. K. Das, C. Schwanke, A. Pfuch, W. Seeber, M. Bock, G. Steinmeyer, T. Elsaesser, and R. Grunwald, “Highly efficient THG in TiO2nanolayers for third-order pulse characterization,” Opt. Express19, 16985–16995 (2011). [CrossRef] [PubMed]
  38. E. Portuondo-Campa, A. Tortschanoff, F. van Mourik, and M. Chergui, “Ultrafast nonresonant response of TiO2nanostructured films,” J. Chem. Phys.128, 244718–10 (2008). [CrossRef] [PubMed]
  39. H. Long, A. Chen, G. Yang, Y. Li, and P. Lu, “Third-order optical nonlinearities in anatase and rutile TiO2thin films,” Thin Solid Films517, 5601–5604 (2009). [CrossRef]
  40. J. D. B. Bradley, C. C. Evans, J. T. Choy, O. Reshef, P. B. Deotare, F. Parsy, K. C. Phillips, M. Lončar, and E. Mazur, “Submicrometer-wide amorphous and polycrystalline anatase TiO2waveguides for microphotonic devices,” Opt. Express20, 23821–23831 (2012). [CrossRef] [PubMed]
  41. J. T. Choy, J. D. B. Bradley, P. B. Deotare, I. B. Burgess, C. C. Evans, E. Mazur, and M. Lončar, “Integrated TiO2resonators for visible photonics,” Opt. Lett.37, 539–541 (2012). [CrossRef] [PubMed]
  42. V. V. Lozovoy, I. Pastirk, and M. Dantus, “Multiphoton intrapulse interference. IV. Ultrashort laserpulse spectral phase characterization and compensation,” Opt. Lett.29, 775–777 (2004). [CrossRef] [PubMed]
  43. G. P. Agrawal, “Quantum electronics–principles and applications,” in Nonlinear fiber optics,4th ed.(Elsevier/Academic Press, Amsterdam ; Boston, 2007).
  44. T. Ohsaka, F. Izumi, and Y. Fujiki, “Raman spectrum of anatase, TiO2,” J. Raman Spectrosc.7, 321–324 (1978). [CrossRef]
  45. L. Yin, “Study of Nonlinear Optical Effects in Silicon Waveguides,” Ph.D. thesis (2009).
  46. K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron.25, 2665–2673 (1989). [CrossRef]
  47. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express15, 16604–16644 (2007). [CrossRef] [PubMed]
  48. K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides,” Opt. Express16, 12987–12994 (2008). [CrossRef] [PubMed]
  49. M. A. Foster, K. D. Moll, and A. L. Gaeta, “Optimal waveguide dimensions for nonlinear interactions,” Opt. Express12, 2880–2887 (2004). [CrossRef]
  50. H. Tang, F. Lvy, H. Berger, and P. E. Schmid, “Urbach tail of anatase TiO2,” Phys. Rev. B52, 7771 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited