OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 16 — Aug. 12, 2013
  • pp: 18611–18623

Plasmonic enhancement of second harmonic generation on metal coated nanoparticles

Sarina Wunderlich and Ulf Peschel  »View Author Affiliations

Optics Express, Vol. 21, Issue 16, pp. 18611-18623 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1287 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Second Harmonic Generation (SHG) is a widely used tool to study surfaces. Here we investigate SHG from spherical nanoparticles consisting of a dielectric core (radius 100 nm) and a metallic shell of variable thickness. Plasmonic resonances occur that depend on the thickness of the nanoshells and boost the intensity of the Second Harmonic (SH) signal. The origin of the resonances is studied for the fundamental harmonic and the second harmonic frequencies. Mie resonances at the fundamental harmonic frequency dominate resonant effects of the SH-signal at low shell thickness. Resonances excited by a dipole emitting at SH frequency close to the surface explain the enhancement of the SHG-process at a larger shell thickness. All resonances are caused by surface plasmon polaritons, which run on the surface of the spherical particle and are in resonance with the circumference of the sphere. Because their wavelength critically depends on the properties of the metallic layer SHG resonances of core-shell nanoparticles can be easily tuned by varying the thickness of the shell.

© 2013 OSA

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(240.0240) Optics at surfaces : Optics at surfaces
(290.0290) Scattering : Scattering

ToC Category:
Nonlinear Optics

Original Manuscript: May 10, 2013
Revised Manuscript: June 19, 2013
Manuscript Accepted: June 22, 2013
Published: July 29, 2013

Sarina Wunderlich and Ulf Peschel, "Plasmonic enhancement of second harmonic generation on metal coated nanoparticles," Opt. Express 21, 18611-18623 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Shen, “Surface 2nd harmonic-generation - a new technique for surface studies,” Annu. Rev. Mater. Sci.16(1), 69–86 (1986). [CrossRef]
  2. H. Wang, E. C. Y. Yan, E. Borguet, and K. B. Eisenthal, “Second harmonic generation from the surface of centrosymmetric particles in bulk solution,” Chem. Phys. Lett.259(1-2), 15–20 (1996). [CrossRef]
  3. E. C. Y. Yan, Y. Liu, and K. B. Eisenthal, “New method for determination of surface potential of microscopic particles by second harmonic generation,” J. Chem. Phys. B102(33), 6331–6336 (1998). [CrossRef]
  4. H. Wang, T. Troxler, A.-G. Yeh, and H.-L. Dai, “In situ, nonlinear optical probe of surfactant adsorption on the durface of microparticles in colloids,” Langmuir16(6), 2475–2481 (2000). [CrossRef]
  5. S. Roke, O. Berg, J. Buitenhuis, A. van Blaaderen, and M. Bonn, “Surface molecular view of colloidal gelation,” Proc. Natl. Acad. Sci. U.S.A.103(36), 13310–13314 (2006). [CrossRef] [PubMed]
  6. M. Subir, J. Liu, and K. B. Eisenthal, “Protonation at the Aqueous Interface of Polymer Nanoparticles with Second Harmonic Generation,” J. Phys. Chem. C112(40), 15809–15812 (2008). [CrossRef]
  7. A. G. F. de Beer, H. B. de Aguiar, J. F. W. Nijsen, and S. Roke, “Detection of buried microstructures by nonlinear light scattering spectroscopy,” Phys. Rev. Lett.102(9), 095502 (2009). [CrossRef] [PubMed]
  8. H. B. Aguiar, A. G. F. de Beer, M. L. Strader, and S. Roke, “The interfacial tension of nanoscopic oil droplets in water is hardly affected by SDS surfactant,” J. Am. Chem. Soc.132(7), 2122–2123 (2010). [CrossRef] [PubMed]
  9. H. B. de Aguiar, M. L. Strader, A. G. F. de Beer, and S. Roke, “Surface structure of sodium dodecyl sulfate surfactant and oil at the oil-in-water droplet liquid/liquid interface: a manifestation of a nonequilibrium surface state,” J. Phys. Chem. B115(12), 2970–2978 (2011). [CrossRef] [PubMed]
  10. A. G. F. de Beer and S. Roke, “Obtaining molecular orientation from second harmonic and sum frequency scattering experiments in water: Angular distribution and polarization dependence,” J. Chem. Phys.132(23), 234702 (2010). [CrossRef] [PubMed]
  11. W. Gan, B. Xu, and H.-L. Dai, “Activation of Thiols at a Silver Nanoparticle Surface,” Angew. Chem. Int. Ed. Engl.50(29), 6622–6625 (2011). [CrossRef] [PubMed]
  12. R. Vácha, S. W. Rick, P. Jungwirth, A. G. F. de Beer, H. B. de Aguiar, J.-S. Samson, and S. Roke, “The orientation and charge of water at the hydrophobic oil droplet-water interface,” J. Am. Chem. Soc.133(26), 10204–10210 (2011). [CrossRef] [PubMed]
  13. L. H. Haber, S. J. J. Kwok, M. Semeraro, and K. B. Eisenthal, “Probing the colloidal gold nanoparticle/aqueous interface with second harmonic generation,” Chem. Phys. Lett.507(1-3), 11–14 (2011). [CrossRef]
  14. J. Griffin, A. K. Singh, D. Senapati, E. Lee, K. Gaylor, J. Jones-Boone, and P. C. Ray, “Sequence-Specific HCV RNA Quantification Using the Size-Dependent Nonlinear Optical Properties of Gold Nanoparticles,” Small5(7), 839–845 (2009). [CrossRef] [PubMed]
  15. C.-L. Hsieh, R. Grange, Y. Pu, and D. Psaltis, “Bioconjugation of barium titanate nanocrystals with immunoglobulin G antibody for second harmonic radiation imaging probes,” Biomaterials31(8), 2272–2277 (2010). [CrossRef] [PubMed]
  16. J. Jiang, K. B. Eisenthal, and R. Yuste, “Second harmonic generation in neurons: electro-optic mechanism of membrane potential sensitivity,” Biophys. J.93(5), L26–L28 (2007). [CrossRef] [PubMed]
  17. Y. Liu, E. C. Y. Yan, and K. B. Eisenthal, “Effects of bilayer surface charge density on molecular adsorption and transport across liposome bilayers,” Biophys. J.80(2), 1004–1012 (2001). [CrossRef] [PubMed]
  18. G. Gonella and H.-L. Dai, “Determination of adsorption geometry on spherical particles from nonlinear Mie theory analysis of surface second harmonic generation,” Phys. Rev. B84(12), 121402 (2011). [CrossRef]
  19. S. Wunderlich, B. Schürer, C. Sauerbeck, W. Peukert, and U. Peschel, “Molecular Mie model for second harmonic generation and sum frequency generation,” Phys. Rev. B84(23), 235403 (2011). [CrossRef]
  20. B. Schürer, S. Wunderlich, C. Sauerbeck, U. Peschel, and W. Peukert, “Probing colloidal interfaces by angle-resolved second harmonic light scattering,” Phys. Rev. B82(24), 241404 (2010). [CrossRef]
  21. B. Schürer, M. Hoffmann, S. Wunderlich, L. Harnau, U. Peschel, M. M. Ballauff, and W. Peukert, “Second harmonic light scattering from spherical polyelectrolyte brushes,” J. Phys. Chem. C115(37), 18302–18309 (2011). [CrossRef]
  22. J. Rudnick and E. A. Stern, “Second-harmonic radiation from metal surfaces,” Phys. Rev. B4(12), 4274–4290 (1971). [CrossRef]
  23. H. J. Simon, D. E. Mitchell, and J. G. Watson, “Optical second-harmonic generation with surface plasmons in silver films,” Phys. Rev. Lett.33(26), 1531–1534 (1974). [CrossRef]
  24. H. J. Simon, D. E. Mitchell, and J. G. Watson, “Second harmonic generation with surface plasmons in alkali metals,” Opt. Commun.13(3), 294–298 (1975). [CrossRef]
  25. H. J. Simon and J. K. Guha, “Directional surface plasmon scattering from silver films,” Opt. Commun.18(3), 391–394 (1976). [CrossRef]
  26. D. L. Mills, “Theory of second harmonic generation by surface polaritons on metals,” Solid State Commun.24(9), 669–671 (1977). [CrossRef]
  27. J. E. Sipe, V. C. Y. So, M. Fukui, and G. I. Stegeman, “Analysis of second-harmonic generation at metal surfaces,” Phys. Rev. B21(10), 4389–4402 (1980). [CrossRef]
  28. S. Roke and G. Gonella, “Nonlinear light scattering and spectroscopy of particles and droplets in liquids,” Annu. Rev. Phys. Chem.63(1), 353–378 (2012). [CrossRef] [PubMed]
  29. F. W. Vance, B. I. Lemon, and J. T. Hupp, “Enormous hyper-Rayleigh scattering from nanocrystalline gold particle suspensions,” J. Chem. Phys. B102(50), 10091–10093 (1998). [CrossRef]
  30. R. C. Johnson, J. Li, J. T. Hupp, and G. C. Schatz, “Hyper-Rayleigh scattering studies of silver, copper, and platinum nanoparticle suspensions,” Chem. Phys. Lett.356(5-6), 534–540 (2002). [CrossRef]
  31. E. C. Hao, G. C. Schatz, R. C. Johnson, and J. T. Hupp, “Hyper-Rayleigh scattering from silver nanoparticles,” J. Chem. Phys.117(13), 5963 (2002). [CrossRef]
  32. J.-P. Abid, J. Nappa, H. H. Girault, and P.-F. Brevet, “Pure surface plasmon resonance enhancement of the first hyperpolarizability of gold core-silver shell nanoparticles,” J. Chem. Phys.121(24), 12577–12582 (2004). [CrossRef] [PubMed]
  33. J. Nappa, I. Russier-Antoine, E. Benichou, Ch. Jonin, and P.-F. Brevet, “Second harmonic generation from small gold metallic particles: From the dipolar to the quadrupolar response,” J. Chem. Phys.125(18), 184712 (2006). [CrossRef] [PubMed]
  34. J. Nappa, G. Revillod, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, “Electric dipole origin of the second harmonic generation of small metallic particles,” Phys. Rev. B71(16), 165407 (2005). [CrossRef]
  35. M. Chandra and P. K. Das, ““Small-particle limit” in the second harmonic generation from noble metal nanoparticles,” Chem. Phys.358(3), 203–208 (2009). [CrossRef]
  36. M. Chandra and P. K. Das, “Size dependence and dispersion behavior of the first hyperpolarizability of copper nanoparticles,” Chem. Phys. Lett.476(1-3), 62–64 (2009). [CrossRef]
  37. R. Antoine, M. Pellarin, B. Palpant, M. Broyer, B. Prevel, P. Galletto, P. F. Brevet, and H. H. Girault, “Surface plasmon enhanced second harmonic response from gold clusters embedded in an alumina matrix,” J. Appl. Phys.84(8), 4532–4536 (1998). [CrossRef]
  38. J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett.10(5), 1717–1721 (2010). [CrossRef] [PubMed]
  39. N. Feth, S. Linden, M. W. Klein, M. Decker, F. B. P. Niesler, Y. Zeng, W. Hoyer, J. Liu, S. W. Koch, J. V. Moloney, and M. Wegener, “Second-harmonic generation from complementary split-ring resonators,” Opt. Lett.33(17), 1975–1977 (2008). [CrossRef] [PubMed]
  40. F. B. P. Niesler, N. Feth, S. Linden, J. Niegemann, J. Gieseler, K. Busch, and M. Wegener, “Second-harmonic generation from split-ring resonators on a GaAs substrate,” Opt. Lett.34(13), 1997–1999 (2009). [CrossRef] [PubMed]
  41. N. Feth, M. König, M. Husnik, K. Stannigel, J. Niegemann, K. Busch, M. Wegener, and S. Linden, “Electromagnetic interaction of split-ring resonators: The role of separation and relative orientation,” Opt. Express18(7), 6545–6554 (2010). [CrossRef] [PubMed]
  42. H. Lu, X. Liu, R. Zhou, Y. Gong, and D. Mao, “Second-harmonic generation from metal-film nanohole arrays,” Appl. Opt.49(12), 2347–2351 (2010). [CrossRef] [PubMed]
  43. G. S. Agarwal and S. S. Jha, “Theory of second harmonic generation at a metal surface with surface plasmon excitation,” Solid State Commun.41(6), 499–501 (1982). [CrossRef]
  44. J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-harmonic rayleigh scattering from a sphere of centrosymmetric material,” Phys. Rev. Lett.83(20), 4045–4048 (1999). [CrossRef]
  45. W. L. Mochán, J. A. Maytorena, B. S. Mendoza, and V. L. Brudny, “Second-harmonic generation in arrays of spherical particles,” Phys. Rev. B68(8), 085318 (2003). [CrossRef]
  46. B. S. Mendoza and W. L. Mochán, “Second harmonic surface response of a composite,” Opt. Mater.29(1), 1–5 (2006). [CrossRef]
  47. J. Martorell, R. Vilaseca, and R. Corbalán, “Scattering of second-harmonic light from small spherical particles ordered in a crystalline lattice,” Phys. Rev. A55(6), 4520–4525 (1997). [CrossRef]
  48. S. Roke, W. G. Roeterdink, J. E. G. J. Wijnhoven, A. V. Petukhov, A. W. Kleyn, and M. Bonn, “Vibrational sum frequency scattering from a submicron suspension,” Phys. Rev. Lett.91(25), 258302 (2003). [CrossRef] [PubMed]
  49. S. Viarbitskaya, V. Kapshai, P. van der Meulen, and T. Hansson, “Size dependence of second-harmonic generation at the surface of microspheres,” Phys. Rev. A81(5), 053850 (2010). [CrossRef]
  50. S.-H. Jen, H.-L. Dai, and G. Gonella, “The effect of particle size in second harmonic generation from the surface of spherical colloidal particles. II: The nonlinear Rayleigh−Gans−Debye model,” J. Phys. Chem. C114(10), 4302–4308 (2010). [CrossRef]
  51. J. I. Dadap, “Optical second-harmonic scattering from cylindrical particles,” Phys. Rev. B78(20), 205322 (2008). [CrossRef]
  52. D. Östling, P. Stampfli, and K. H. Bennemann, “Theory of nonlinear optical properties of small metallic spheres,” Z. Phys. D28, 169–175 (1993). [CrossRef]
  53. Y. Pavlyukh and W. Hübner, “Nonlinear Mie scattering from spherical particles,” Phys. Rev. B70(24), 245434 (2004). [CrossRef]
  54. S. Roke, M. Bonn, and A. V. Petukhov, “Nonlinear optical scattering: The concept of effective susceptibility,” Phys. Rev. B70(11), 115106 (2004). [CrossRef]
  55. J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, and P.-F. Brevet, “Nonlinear Mie theory for the second harmonic generation in metallic nanoshells,” J. Opt. Soc. Am. B29(8), 2213–2221 (2012). [CrossRef]
  56. J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, and P.-F. Brevet, “Effect of the dielectric core and embedding medium on the second harmonic generation from plasmonic nanoshells: tunability and sensing,” J. Phys. Chem. C117(2), 1172–1177 (2013). [CrossRef]
  57. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic Press, 1969).
  58. M. Sitarski, “Internal heating of multilayered aerosol particles by electromagnetic radiation,” Langmuir3(1), 85–93 (1987). [CrossRef]
  59. J. V. Dave, “Scattering of electromagnetic radiation by a large, absorbing sphere,” IBM J. Res. Develop.13(3), 302–313 (1969). [CrossRef]
  60. W. J. Wiscombe, “Improved Mie scattering algorithms,” Appl. Opt.19(9), 1505–1509 (1980). [CrossRef] [PubMed]
  61. J. H. Bruning and Y. T. Lo, “Multiple scattering of EM waves by spheres part I: multipole expansion and ray-optical solutions,” IEEE Trans. Antenn. Propag.19(3), 378–390 (1971). [CrossRef]
  62. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  63. F. X. Wang, F. J. Rodríguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B80(23), 233402 (2009). [CrossRef]
  64. G. Bachelier, J. Butet, I. Russier-Antoine, C. Jonin, E. Benichou, and P.-F. Brevet, “Origin of optical second-harmonic generation in spherical gold nanoparticles: Local surface and nonlocal bulk contributions,” Phys. Rev. B82(23), 235403 (2010). [CrossRef]
  65. G. Gonella, W. Gan, B. Xu, and H.-L. Dai, “The effect of composition, morphology, and susceptibility on nonlinear light scattering from metallic and dielectric nanoparticles,” J. Phys. Chem. Lett.3(19), 2877–2881 (2012). [CrossRef]
  66. K. H. Drexhage, “IV Interaction of light with monomolecular dye layers,” in Progress in Optics, E. Wolf, ed. (Elsevier, 1974), Vol. 12, pp. 163–232.
  67. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett.97(1), 017402 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited