OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 16 — Aug. 12, 2013
  • pp: 18624–18639

Polarization-resolved exact light backscattering by an ensemble of particles in air

Grégory David, Benjamin Thomas, Elodie Coillet, Alain Miffre, and Patrick Rairoux  »View Author Affiliations


Optics Express, Vol. 21, Issue 16, pp. 18624-18639 (2013)
http://dx.doi.org/10.1364/OE.21.018624


View Full Text Article

Enhanced HTML    Acrobat PDF (1086 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present the first experimental observation of exact backscattering of light by an ensemble of particles in ambient air. Our experimental set-up operates in the far-field single scattering approximation, covers the exact backscattering direction with accuracy (θ = π ± ε with ε = 3.5 × 10−3 rad) and efficiently collects the particles backscattering radiation, while minimizing any stray light. Moreover, by using scattering matrix formalism, the observation of the particles UV-backscattering signal allowed to measure the particles depolarization of water droplets and salt particles in air, for the first time, in the exact backscattering direction. We believe this result may be useful for comparison with the existing numerical models and for remote sensing field applications in radiative transfer and climatology.

© 2013 OSA

OCIS Codes
(010.1100) Atmospheric and oceanic optics : Aerosol detection
(010.3640) Atmospheric and oceanic optics : Lidar
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(260.5430) Physical optics : Polarization
(280.1310) Remote sensing and sensors : Atmospheric scattering
(290.1350) Scattering : Backscattering

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: May 20, 2013
Revised Manuscript: July 9, 2013
Manuscript Accepted: July 9, 2013
Published: July 29, 2013

Citation
Grégory David, Benjamin Thomas, Elodie Coillet, Alain Miffre, and Patrick Rairoux, "Polarization-resolved exact light backscattering by an ensemble of particles in air," Opt. Express 21, 18624-18639 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-16-18624


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. X. Wang, J. Laï, and Z. Li, “Polarization studies for backscattering of RBC suspensions based on Mueller matrix decomposition,” Opt. Express20(18), 20771–20782 (2012). [CrossRef] [PubMed]
  2. D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature390(6661), 671–673 (1997). [CrossRef]
  3. D. M. Winker and M. T. Osborn, “Preliminary analysis of observations of the Pinatubo volcanic plume with a polarization-sensitive lidar,” Geophys. Res. Lett.19(2), 171–174 (1992). [CrossRef]
  4. D. N. Whiteman, D. Venable, and E. Landulfo, “Comments on “Accuracy of Raman lidar water vapor calibration and its applicability to long-term measurements”,” Appl. Opt.50(15), 2170–2176, author reply 2177–2178 (2011). [CrossRef] [PubMed]
  5. I. Veselovskii, O. Dubovik, A. Kolgotin, T. Lapyonok, P. Di Girolamo, D. Summa, D. N. Whiteman, M. Mishchenko, and D. Tanré, “Application of randomly oriented spheroids for retrieval of dust particle parameters from multiwavelength lidar measurements,” J. Geophys. Res.115(D21), D21203 (2010). [CrossRef]
  6. G. David, B. Thomas, T. Nousiainen, A. Miffre, and P. Rairoux, “Retrieving volcanic, desert dust, and sea-salt particle properties from two/three-component particle mixtures using UV-VIS polarization Lidar and T-matrix,” Atmos. Chem. Phys. (accepted).
  7. N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Polarimetry in turbid, birefringent, optically active media: A Monte Carlo study of Mueller matrix decomposition in the backscattering geometry,” J. Appl. Phys.105(10), 102023 (2009). [CrossRef]
  8. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption and Emission of Light by Small Particles (Cambridge University Press, NASA 2002)
  9. T. Nousiainen, “Optical modeling of mineral dust particles: a review,” J. Quant. Spec. Rad. Transf.110(14-16), 1261–1279 (2009). [CrossRef]
  10. M. Born and E. Wolf, Principles of Optics: Electromagnetic theory of propagation interference and diffraction of light (Pergamon Press, 1982)
  11. G. Mie, “BeiträgezurOptiktrüberMedien, speziellkolloidalerMetallösungen,” Annalen der Physik330(3), 377–445 (1908). [CrossRef]
  12. R. C. N. Studinski and I. A. Vitkin, “Methodology for examining polarized light interactions with tissues and tissuelike media in the exact backscattering direction,” J. Biomed. Opt.5(3), 330–337 (2000). [CrossRef] [PubMed]
  13. I. A. Vitkin and R. C. N. Studinski, “Polarization preservation in diffusive scattering from in vivo turbid biological media: effects of tissue optical absorption in the exact backscattering direction,” Opt. Commun.190(1-6), 37–43 (2001). [CrossRef]
  14. Y. Kuga and A. Ishimaru, “Retroreflectance from a dense distribution of spherical particles,” J. Opt. Soc. Am. A1(8), 831–835 (1984). [CrossRef]
  15. O. Muñoz and J. W. Hovenier, “Laboratory measurements of single light scattering by ensembles of randomly oriented small irregular particles in air. A review,” J. Quant. Spec. Rad. Transf.112(11), 1646–1657 (2011). [CrossRef]
  16. T. Sakaï, T. Nagai, Y. Zaizen, and Y. Mano, “Backscattering linear depolarization ratio measurements of mineral, sea-salt, and ammonium sulfate particles simulated in a laboratory chamber,” Appl. Opt.49(23), 4441–4449 (2010). [CrossRef] [PubMed]
  17. L. Liu, M. I. Mishchenko, J. W. Hovenier, H. Volten, and O. Muñoz, “Scattering matrix of quartz aerosols: comparison and synthesis of laboratory and Lorenz-Mie results,” J. Quant. Spec. Rad. Transf.79–80, 911–920 (2003). [CrossRef]
  18. M. Schnaiter, S. Büttner, O. Möhler, J. Skrotzki, M. Vragel, and R. Wagner, “Influence of particle size and shape on the backscattering linear depolarization ratio of small ice crystals – cloud chamber measurements in the context of contrail and cirrus microphysics,” Atmos. Chem. Phys.12(21), 10465–10484 (2012). [CrossRef]
  19. IPCC report, Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to 5 the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, UK and New York, NY, USA, 996 pp., (2007).
  20. C. F. Bohren and D. R. Hoffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 1982).
  21. M. I. Mishchenko and J. W. Hovenier, “Depolarization of light backscattered by randomly oriented nonspherical particles,” Opt. Lett.20(12), 1356–1358 (1995). [CrossRef] [PubMed]
  22. M. I. Mishchenko, J. W. Hovenier, and D. W. Mackowski, “Single scattering by a small volume element,” J. Opt. Soc. Am. A21(1), 71–87 (2004). [CrossRef] [PubMed]
  23. G. David, A. Miffre, B. Thomas, and P. Rairoux, “Sensitive and accurate dual-wavelength UV-VIS polarization detector for optical remote sensing of tropospheric aerosols,” Appl. Phys. B108(1), 197–216 (2012). [CrossRef]
  24. M. I. Mishchenko, “Electromagnetic scattering by nonspherical particles: A tutorial review,” J. Quant. Spec. Rad. Transf.110(11), 808–832 (2009). [CrossRef]
  25. J. W. Hovenier, H. Volten, O. Muñoz, W. J. van der Zande, and L. B. F. M. Waters, “Laboratory studies of scattering matrices for randomly oriented particles: potentials, problems and perspectives,” J. Quant. Spec. Rad. Transf.79–80, 741–755 (2003). [CrossRef]
  26. D. S. Wiersma, M. P. Van Albada, and A. Lagendijk, “An accurate technique to record the angular distribution of backscattered light,” Rev. Sci. Instrum.66(12), 5473–5476 (1995). [CrossRef]
  27. A. Glen and S. D. Brooks, “A new method for measuring optical scattering properties of atmospherically relevant dusts using the Cloud Aerosol Spectrometer Polarization (CASPOL) instrument,” Atmos. Chem. Phys.13(3), 1345–1356 (2013). [CrossRef]
  28. M. Hayman, S. Spuler, B. Morley, and J. VanAndel, “Polarization lidar operation for measuring backscatter phase matrices of oriented scatterers,” Opt. Express20(28), 29553–29567 (2012). [CrossRef] [PubMed]
  29. J. Poirson, T. Lanternier, J. C. Cotteverte, A. L. Floch, and F. Bretenaker, “Jones matrices of a quarter-wave plate for Gaussian beams,” Appl. Opt.34(30), 6806–6818 (1995). [CrossRef] [PubMed]
  30. R. J. Perkins, LMFA, Ecole Centrale Lyon, France, personal communication (2012).
  31. B. Thomas, A. Miffre, G. David, J. P. Cariou, and P. Rairoux, “Remote sensing of trace gases with optical correlation spectroscopy and lidar: theoretical and numerical approach,” Appl. Phys. B108(3), 689–702 (2012). [CrossRef]
  32. M. I. Mishchenko, L. Liu, and G. Videen, “Conditions of applicability of the single-scattering approximation,” Opt. Express15(12), 7522–7527 (2007). [CrossRef] [PubMed]
  33. T. Murayama, H. Okamoto, N. Kaneyasu, H. Kamataki, and K. Miura, “Application of lidar depolarization measurement in the atmospheric boundary layer: Effects of dust and sea-salt particles,” J. Geophys. Res.104(D24No. D24), 31781 (1999). [CrossRef]
  34. W. A. Shurcliff, Polarized light (Harvard University Press, 1962)
  35. X. Zhu, “Explicit Jones transformation matrix for a tilted birefringent plate with its optic axis parallel to the plate surface,” Appl. Opt.33(16), 3502–3506 (1994). [CrossRef] [PubMed]
  36. K. Sassen, “Polarization in Lidar,” in Lidar, Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited