OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 16 — Aug. 12, 2013
  • pp: 18661–18670

Enhanced sensitivity of photonic crystal slab transducers by oblique-angle layer deposition

Yousef Nazirizadeh, Florian von Oertzen, Torben Karrock, Janine Greve, and Martina Gerken  »View Author Affiliations

Optics Express, Vol. 21, Issue 16, pp. 18661-18670 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3589 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Photonic crystal slabs (PCS) are one of the major transducers for label-free, optical biosensing applications. In this paper we present oblique-angle layer deposition of the high index slab material as a method to improve the PCS sensitivity. In simulations and experiments we consider PCSs composed of a high index silicon monoxide layer on a nanostructured resist layer on a glass substrate. By mounting the substrate at an oblique angle with respect to the evaporation source, the high index material distribution on the nanostructured surface is modified due to shadowing effects. Finite-difference time-domain (FDTD) simulations were performed to predict bulk and surface sensitivities. In order to verify the simulation results we fabricated PCSs at various deposition angles using nanoimprint lithography to replicate a linear grating nanostructure into the resist layer and thermal evaporation for a 60-nm silicon monoxide deposition. The bulk sensitivities of these structures were measured using water-glycerol dilutions. A sensitivity improvement of 281% was obtained for PCSs fabricated at 45° deposition angle compared to normal incidence deposition.

© 2013 OSA

OCIS Codes
(280.1415) Remote sensing and sensors : Biological sensing and sensors
(160.1435) Materials : Biomaterials
(160.5298) Materials : Photonic crystals

ToC Category:

Original Manuscript: April 17, 2013
Revised Manuscript: June 19, 2013
Manuscript Accepted: June 21, 2013
Published: July 30, 2013

Virtual Issues
Vol. 8, Iss. 9 Virtual Journal for Biomedical Optics

Yousef Nazirizadeh, Florian von Oertzen, Torben Karrock, Janine Greve, and Martina Gerken, "Enhanced sensitivity of photonic crystal slab transducers by oblique-angle layer deposition," Opt. Express 21, 18661-18670 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Threm, Y. Nazirizadeh, and M. Gerken, “Photonic crystal biosensors towards on-chip integration,” J Biophotonics16, 1–16 (2012). [PubMed]
  2. B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B Chem.81(2-3), 316–328 (2002). [CrossRef]
  3. R. Magnusson, D. Wawro, S. Zimmerman, and Y. Ding, “Resonant photonic biosensors with polarization-based multiparametric discrimination in each channel,” Sensors (Basel)11(12), 1476–1488 (2011). [CrossRef] [PubMed]
  4. B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, “Label-free assays on the BIND system,” J. Biomol. Screen.9(6), 481–490 (2004). [CrossRef] [PubMed]
  5. S. M. Shamah and B. T. Cunningham, “Label-free cell-based assays using photonic crystal optical biosensors,” Analyst (Lond.)136(6), 1090–1102 (2011). [CrossRef] [PubMed]
  6. Y. Nazirizadeh, U. Bog, S. Sekula, T. Mappes, U. Lemmer, and M. Gerken, “Low-cost label-free biosensors using photonic crystals embedded between crossed polarizers,” Opt. Express18(18), 19120–19128 (2010). [CrossRef] [PubMed]
  7. S. Fan and J. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B65(23), 235112 (2002). [CrossRef]
  8. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express16(2), 1020–1028 (2008). [CrossRef] [PubMed]
  9. M. El Beheiry, V. Liu, S. Fan, and O. Levi, “Sensitivity enhancement in photonic crystal slab biosensors,” Opt. Express18(22), 22702–22714 (2010). [CrossRef] [PubMed]
  10. N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid. Nanofluid.4(1-2), 117–127 (2008). [CrossRef]
  11. M. Huang, A. A. Yanik, T. Y. Chang, and H. Altug, “Sub-wavelength nanofluidics in photonic crystal sensors,” Opt. Express17(26), 24224–24233 (2009). [CrossRef] [PubMed]
  12. L. Shi, P. Pottier, Y. A. Peter, and M. Skorobogatiy, “Guided-mode resonance photonic crystal slab sensors based on bead monolayer geometry,” Opt. Express16(22), 17962–17971 (2008). [CrossRef] [PubMed]
  13. L. J. Guo, “Nanoimprint lithography: Methods and material requirements,” Adv. Mater.19(4), 495–513 (2007). [CrossRef]
  14. I. D. Block, L. L. Chan, and B. T. Cunningham, “Photonic crystal optical biosensor incorporating structured low-index porous dielectric,” Sensor Actuat. B120(1), 187–193 (2006). [CrossRef]
  15. W. Zhang, N. Ganesh, I. D. Block, and B. T. Cunningham, “High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area,” Sensor Actuat. B131(1), 279–284 (2008). [CrossRef]
  16. W. Zhang, S. Kim, N. Ganesh, I. D. Block, P. C. Mathias, H.-Y. Wu, and B. T. Cunningham, “Deposited nanorod films for photonic crystal biosensor applications,” J. Vac. Sci. Technol. A28(4), 996–1001 (2010). [CrossRef]
  17. M. Stroisch, C. Teiwes-Morin, T. Woggon, M. Gerken, U. Lemmer, K. Forberich, and A. Gombert, “Photonic stopband tuning of organic semiconductor distributed feedback lasers by oblique angle deposition of an intermediate high index layer,” Appl. Phys. Lett.95(2), 021112 (2009). [CrossRef]
  18. Y. Nazirizadeh, F. Oertzen, K. Plewa, N. Barié, P.-J. Jakobs, M. Guttmann, H. Leiste, and M. Gerken, “Sensitivity optimization of injection-molded photonic crystal slabs for biosensing applications,” Opt. Mater. Express3(5), 556–565 (2013). [CrossRef]
  19. M. Hansen, M. Ziegler, H. Kohlstedt, A. Pradana, M. Raedler, and M. Gerken, “UV capillary force lithography for multiscale structures,” J. Vac. Sci. Technol. B30(3), 031601 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited