OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 16 — Aug. 12, 2013
  • pp: 18680–18688

Integration, photostability and spontaneous emission rate enhancement of colloidal PbS nanocrystals for Si-based photonics at telecom wavelengths

Markus Humer, Romain Guider, Wolfgang Jantsch, and Thomas Fromherz  »View Author Affiliations

Optics Express, Vol. 21, Issue 16, pp. 18680-18688 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (867 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We experimentally investigate PbS nanocrystal (NC) photoluminescence (PL) coupled to all-integrated Si-based ring resonators and waveguides at telecom wavelengths. Dissolving the NCs into Novolak polymer significantly improves their stability in ambient atmosphere. Polymer-NC blends of various NC concentrations can be applied to and removed from the same device. For NC concentrations up to 4vol%, the spontaneous emission rate into ring-resonator modes is enhanced by a factor of ~13 with respect to that into a straight waveguide. The PL intensity shows a linear dependence on the excitation intensity up to 1.64kW/cm2 and stable quality factors of ~2500.

© 2013 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.3990) Optical devices : Micro-optical devices
(230.5750) Optical devices : Resonators
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Integrated Optics

Original Manuscript: May 3, 2013
Revised Manuscript: June 12, 2013
Manuscript Accepted: June 12, 2013
Published: July 30, 2013

Markus Humer, Romain Guider, Wolfgang Jantsch, and Thomas Fromherz, "Integration, photostability and spontaneous emission rate enhancement of colloidal PbS nanocrystals for Si-based photonics at telecom wavelengths," Opt. Express 21, 18680-18688 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. V. Talapin, J. S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chem. Rev.110(1), 389–458 (2010). [CrossRef] [PubMed]
  2. P. Guyot-Sionnest, “Electrical transport in colloidal quantum dot films,” J. Phys. Chem. Lett.3(9), 1169–1175 (2012). [CrossRef]
  3. A. Omari, I. Moreels, F. Masia, W. Langbein, P. Borri, D. Van Thourhout, P. Kockaert, and Z. Hens, “Role of interband and photoinduced absorption in the nonlinear refraction and absorption of resonantly excited PbS quantum dots around 1550nm,” Phys. Rev. B85(11), 115318 (2012). [CrossRef]
  4. K. Wundke, S. Pötting, J. Auxier, A. Schülzgen, N. Peyghambarian, and N. F. Borrelli, “PbS quantum-dot-doped glasses for ultrashort-pulse generation,” Appl. Phys. Lett.76(1), 10–12 (2000). [CrossRef]
  5. A. Ishida, Y. Sugiyama, Y. Isaji, K. Kodama, Y. Takano, H. Sakata, M. Rahim, A. Khiar, M. Fill, F. Felder, and H. Zogg, “2W high efficiency PbS mid-infrared surface emitting laser,” Appl. Phys. Lett.99(12), 121109 (2011). [CrossRef]
  6. J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett.9(8), 2935–2939 (2009). [CrossRef] [PubMed]
  7. K. Szendrei, W. Gomulya, M. Yarema, W. Heiss, and M. A. Loi, “PbS nanocrystal solar cells with high efficiency and fill factor,” Appl. Phys. Lett.97(20), 203501 (2010). [CrossRef]
  8. Y. Olsson, G. Chen, R. Rapaport, D. Fuchs, V. C. Sundar, J. S. Steckel, M. G. Bawendi, A. Aharoni, and U. Banin, “Fabrication and optical properties of polymeric waveguides containing nanocrystalline quantum dots,” Appl. Phys. Lett.85(19), 4469–4471 (2004). [CrossRef]
  9. N. Tessler, V. Medvedev, M. Kazes, S. Kan, and U. Banin, “Efficient near-infrared polymer nanocrystal light-emitting diodes,” Science295(5559), 1506–1508 (2002). [CrossRef] [PubMed]
  10. L. Bakueva, S. Musikhin, M. A. Hines, T.-W. F. Chang, M. Tzolov, G. D. Scholes, and E. H. Sargent, “Size-tunable infrared (1000–1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer,” Appl. Phys. Lett.82(17), 2895–2897 (2003). [CrossRef]
  11. M. V. Kovalenko, R. D. Schaller, D. Jarzab, M. A. Loi, and D. V. Talapin, “Inorganically functionalized PbS-CdS colloidal nanocrystals: integration into amorphous chalcogenide glass and luminescent properties,” J. Am. Chem. Soc.134(5), 2457–2460 (2012). [CrossRef] [PubMed]
  12. D. F. Dorfner, T. Hürlimann, G. Abstreiter, and J. J. Finley, “Silicon photonic crystal nanostructures for refractive index sensing,” Appl. Phys. Lett.91, 233111 (2007). [CrossRef]
  13. R. Bose, X. Yang, R. Chatterjee, J. Gao, and C. W. Wong, “Weak coupling interactions of colloidal lead sulphide nanocrystals with silicon photonic crystal nanocavities near 1.55µm at room temperature,” Appl. Phys. Lett.90(11), 111117 (2007). [CrossRef]
  14. M. T. Rakher, R. Bose, C. W. Wong, and K. Srinivasan, “Spectroscopy of 1.55 μm PbS quantum dots on Si photonic crystal cavities with a fiber taper waveguide,” Appl. Phys. Lett.96(16), 161108 (2010). [CrossRef]
  15. Z. Wu, Z. Mi, P. Bhattacharya, T. Zhu, and J. Xu, “Enhanced spontaneous emission at 1.55 μm from colloidal PbSe quantum dots in a Si photonic crystal microcavity,” Appl. Phys. Lett.90(17), 171105 (2007). [CrossRef]
  16. W. H. Wong, J. Zhou, and E. Y. B. Pun, “Low-loss polymeric optical waveguides using electron-beam direct writing,” Appl. Phys. Lett.78(15), 2110–2112 (2001). [CrossRef]
  17. C. S. Huang and W. C. Wang, “Large-core single-mode rib SU8 waveguide using solvent-assisted microcontact molding,” Appl. Opt.47(25), 4540–4547 (2008). [CrossRef] [PubMed]
  18. I. Moreels, B. De Geyter, D. Van Thourhout, and Z. Hens, “Transmission of a quantum-dot-silicon-on-insulator hybrid notch filter,” J. Opt. Soc. Am. B26(6), 1243–1247 (2009). [CrossRef]
  19. C. Grillet, C. Monat, C. L. Smith, B. J. Eggleton, D. J. Moss, S. Frédérick, D. Dalacu, P. J. Poole, J. Lapointe, G. Aers, and R. L. Williams, “Nanowire coupling to photonic crystal nanocavities for single photon sources,” Opt. Express15(3), 1267–1276 (2007). [CrossRef] [PubMed]
  20. M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express13(5), 1515–1530 (2005). [CrossRef] [PubMed]
  21. R. Guider, N. Daldosso, A. Pitanti, E. Jordana, J. M. Fedeli, and L. Pavesi, “NanoSi low loss horizontal slot waveguides coupled to high Q ring resonators,” Opt. Express17(23), 20762–20770 (2009). [CrossRef] [PubMed]
  22. P. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express13(3), 801–820 (2005). [CrossRef] [PubMed]
  23. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).
  24. L. C. Andreani, J. M. Gérard, and G. Panzarini, “Strong-coupling regime for quantum boxes in pillar microcavities: Theory,” Phys. Rev. B60(19), 13276–13279 (1999). [CrossRef]
  25. R. S. Tummidi, R. M. Pafchek, K. Kim, and T. L. Koch, “Modification of spontaneous emission rates in shallow ridge 8.3 nm erbium doped silica slot waveguides,” in Proceedings of 6th IEEE International Conference on Group IV Photonics (San Francisco, 2009), pp226–228. [CrossRef]
  26. V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature447(7143), 441–446 (2007). [CrossRef] [PubMed]
  27. V. Rinnerbauer, H. J. Egelhaaf, K. Hingerl, S. Werner, T. Warming, A. Hoffmann, M. Kovalenko, W. Heiss, G. Hesser, and F. Schaffler, “Energy transfer in close-packed PbS nanocrystal films,” Phys. Rev. B77(8), 085322 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited