OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 16 — Aug. 12, 2013
  • pp: 18697–18711

A new approach to measure the volume scattering function

Hiroyuki Tan, Roland Doerffer, Tomohiko Oishi, and Akihiko Tanaka  »View Author Affiliations


Optics Express, Vol. 21, Issue 16, pp. 18697-18711 (2013)
http://dx.doi.org/10.1364/OE.21.018697


View Full Text Article

Enhanced HTML    Acrobat PDF (1770 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a novel optical approach to measure the volume scattering function (VSF) by image detection. The instrument design, based upon a combination of two reflectors, uses a unique measurement principle and allows the rapid simultaneous determination of scattering at a wide range of angles. The advantages of the newly developed scattering meter are that: 1) it can determine the scattering function from 8° to 172° at 1° intervals without changing the sensitivity of the detector, without moving any optical parts, and can do so within a few seconds, 2) the unique optical design facilitates determination of the spectral VSF over the full visible spectrum, i.e. it can obtain the VSF at a specific wavelength with an optional wavelength-resolution. Measurements under controlled conditions for the assessment of the instrument agreed well with theoretically predicted scattering functions. Measurements with cultured phytoplankton of different species revealed a significant variety of the VSF together with spectral variation. The observed results will stimulate and improve radiative transfer and/or two-flow models of light in the ocean, which is an important role for ocean color remote sensing algorithm development, particularly for coastal regions.

© 2013 OSA

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(120.5820) Instrumentation, measurement, and metrology : Scattering measurements
(010.1350) Atmospheric and oceanic optics : Backscattering

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: June 3, 2013
Revised Manuscript: July 2, 2013
Manuscript Accepted: July 8, 2013
Published: July 30, 2013

Virtual Issues
Vol. 8, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Hiroyuki Tan, Roland Doerffer, Tomohiko Oishi, and Akihiko Tanaka, "A new approach to measure the volume scattering function," Opt. Express 21, 18697-18711 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-16-18697


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. W. Preisendorfer, “Application of radiative transfer theory to light measurement in the sea,” Union Geod. Geophys. Inst. Monogr.10, 11–30 (1961).
  2. E. Aas, “Two-stream irradiance model for deep waters,” Appl. Opt.26(11), 2095–2101 (1987). [CrossRef] [PubMed]
  3. A. Morel, “Light and marine photosynthesis: a spectral model with geochemical and climatological implications,” Prog. Oceanogr.26(3), 263–306 (1991). [CrossRef]
  4. R. Doerffer and J. Fischer, “Concentration of chlorophyll, suspended matter, and gelbstoff in case II water derived from satellite coastal zone color scatter data with inverse modeling methods,” J. Geophys. Res.99(C4), 7457–7466 (1994). [CrossRef]
  5. J. E. Tyler and W. H. Richardson, “Nephelometer for the measurement of volume scattering in situ,” J. Opt. Soc. Am.48(5), 354–357 (1958). [CrossRef]
  6. N. G. Jerlov, “Distribution of suspended material in the Adriatic sea,” Arch. Oceanogr. Limnol.11, 227–250 (1958).
  7. N. Højerslev, “Tydall and fluorescence measurements in Danish and Norwegian waters related to dynamical features,” Rep. Inst. Phys. Oceanogr. Univ. Copenhagen 16 (1971).
  8. T. J. Petzold, “Volume scattering functions for selected ocean waters,” Tech. Rep. SIO 72–78, Scripps Institution of Oceanography, San Diego, Calif. (1972).
  9. E. Aas, “The calibration of a scatterance and fluorescence meter,” Rep. Dept. Geophys. Univ. Oslo. 40 (1979).
  10. R. Reuter, “Characterization of marine particles suspensions by light scattering (II). Experimental results,” Oceanol. Acta3, 325–332 (1980).
  11. J. R. V. Zaneveld, S. Pegau, and J. L. Mueller, “Volume scattering function and backscattering coefficients: instruments, characterization, field measurements and data analysis protocols,” In J. L Mueller, G. S. Fargion & C. R. McClain (Eds.), Ocean optics protocols for satellite ocean color sensor validation, revision 4, Vol. IV: Inherent optical properties: instruments, characterization, field measurements and data analysis protocols, NASA Tech. Memo. 2003–211621/Rev4-Vol.IV. Greenbelt: NASA Goddard Space Flight Center, 65–76 (2003).
  12. X. Zhang, M. Lewis, M. Lee, B. Johnson, and G. Korotaev, “The volume scattering function of natural bubble populations,” Limnol. Oceanogr.47(5), 1273–1282 (2002). [CrossRef]
  13. M. E. Lee and M. R. Lewis, “A new method of the measurement of the optical volume scattering function in the upper ocean,” J. Atmos. Ocean. Technol.20(4), 563–571 (2003). [CrossRef]
  14. J. K. Lotsberg, E. Marken, J. J. Stamnes, S. R. Erga, K. Aursland, and C. Olseng, “Laboratory measurement of light scattering from marine particles,” Limnol. Oceanogr.5, 34–40 (2007). [CrossRef]
  15. J. T. O. Kirk, “Point-source integrating-cavity absorption meter: theoretical principles and numerical modeling,” Appl. Opt.36(24), 6123–6128 (1997). [CrossRef] [PubMed]
  16. R. Röttgers and R. Doerffer, “Measurements of optical absorption by chromophoric dissolved organic matter using a point-source integrating-cavity absorption meter,” Limnol. Oceanogr. Methods5, 126–135 (2007). [CrossRef]
  17. G. Kullenberg, “Scattering of light by Sargasso sea water,” Deep-Sea Res.15, 423–432 (1968).
  18. H. Volten, J. F. Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurement of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr.43(6), 1180–1197 (1998). [CrossRef]
  19. X. Zhang, M. Lewis, and B. Johnson, “Influence of bubbles on scattering of light in the ocean,” Appl. Opt.37(27), 6525–6536 (1998). [CrossRef] [PubMed]
  20. M. Chami, E. B. Shybanov, T. Y. Churilova, G. A. Khomenko, M. E.-G. Lee, O. V. Martynov, G. A. Berseneva, and G. K. Korotaev, “Optical properties of the particles in the Crimea coastal waters (Black Sea),” J. Geophys. Res.110, C11020 (2005), doi:10. 1029/2005JC003008.
  21. T. Oishi, “Light scattering and polarization by suspended particulate matter in sea water,” Rep. Inst. Phys. Oceanogr. Univ. Copenhagen 49 (1987).
  22. A. Morel, “Diffusion de la lumière par les eaux de mer; résultats expérimentaux et approche théorique,” in Optics of the sea: NATO AGARD Lect. Ser.61, (1973).
  23. N. G. Jerlov, Marine Optics (Elsevier, Amsterdam, 1976).
  24. R. M. Pope and E. S. Fry, “Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt.36(33), 8710–8723 (1997). [CrossRef] [PubMed]
  25. A. Morel, “Optical properties of pure water and pure sea water,” in Optical Aspects of Oceanography, N.G. Jerlov and E.S. Nielson, eds. (Academic, New York, 1974), pp. 1–24.
  26. W. E. Vargas and G. A. Niklasson, “Generalized method for evaluating scattering parameters used in radiative transfer models,” J. Opt. Soc. Am. A14(9), 2243–2252 (1997). [CrossRef]
  27. K. Alexandra, B. Marcus, and D. Claus-Dieter, COASTAL PHYTOPLANKTON: Photo guide for northern European seas (Pfeil, München, 2010).
  28. Alfred Wegener Institute for Polar and Marine Research (AWI), Biodiversity data provider, http://planktonnet.awi.de
  29. D. T. Thomas, “Scattering by plasma and dielectric bodies,” Ph.D. Thesis, Ohio State Univ., (1962).
  30. E. Aas, “The refractive index of phytoplankton,” Rep. Dept. Geophys. Univ. Oslo 46, (1981).
  31. E. Aas, “Refractive index of phytoplankton derived from its metabolite composition,” J. Plankton Res.18(12), 2223–2249 (1996). [CrossRef]
  32. H. C. van de Hulst, Light scattering by small particles (Wiley, New York, 1957).
  33. M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Light scattering by nonspherical particles: theory, measurements, and applications (Academic press, San Diego, 2000).
  34. R. J. Gibbs, “Light scattering from particles of different shapes,” J. Geophys. Res.83(C1), 501–502 (1978). [CrossRef]
  35. A. J. A. Smith, “The scattering of light by non-spherical particles,” Rep. Dept. Geophys. Univ. Oxford, (2008).
  36. D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr.61(1), 27–56 (2004). [CrossRef]
  37. W. Zhou, G. Wang, Z. Sun, W. Cao, Z. Xu, S. Hu, and J. Zhao, “Variations in the optical scattering properties of phytoplankton cultures,” Opt. Express20(10), 11189–11206 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited