OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 16 — Aug. 12, 2013
  • pp: 18712–18723

Accurate and agile digital control of optical phase, amplitude and frequency for coherent atomic manipulation of atomic systems

Joseph Thom, Guido Wilpers, Erling Riis, and Alastair G. Sinclair  »View Author Affiliations

Optics Express, Vol. 21, Issue 16, pp. 18712-18723 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1440 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a system for fast and agile digital control of laser phase, amplitude and frequency for applications in coherent atomic systems. The full versatility of a direct digital synthesis radiofrequency source is faithfully transferred to laser radiation via acousto-optic modulation. Optical beatnotes are used to measure phase steps up to 2π, which are accurately implemented with a resolution of ≤ 10 mrad. By linearizing the optical modulation process, amplitude-shaped pulses of durations ranging from 500 ns to 500 ms, in excellent agreement with the programmed functional form, are demonstrated. Pulse durations are limited only by the 30 ns rise time of the modulation process, and a measured extinction ratio of > 5 × 1011 is achieved. The system presented here was developed specifically for controlling the quantum state of trapped ions with sequences of multiple laser pulses, including composite and bichromatic pulses. The demonstrated techniques are widely applicable to other atomic systems ranging across quantum information processing, frequency metrology, atom interferometry, and single-photon generation.

© 2013 OSA

OCIS Codes
(020.1670) Atomic and molecular physics : Coherent optical effects
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(300.6210) Spectroscopy : Spectroscopy, atomic
(300.6520) Spectroscopy : Spectroscopy, trapped ion
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Atomic and Molecular Physics

Original Manuscript: June 10, 2013
Revised Manuscript: July 19, 2013
Manuscript Accepted: July 21, 2013
Published: July 30, 2013

Joseph Thom, Guido Wilpers, Erling Riis, and Alastair G. Sinclair, "Accurate and agile digital control of optical phase, amplitude and frequency for coherent atomic manipulation of atomic systems," Opt. Express 21, 18712-18723 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature464(7285), 45–53 (2010). [CrossRef] [PubMed]
  2. H. S. Margolis, “Frequency metrology and clocks,” J. Phys. B: At. Mol. Opt.42(15), 154017 (2009). [CrossRef]
  3. A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, “Optics and interferometry with atoms and molecules,” Rev. Mod. Phys.81(3), 1051–1129 (2009). [CrossRef]
  4. C. Roos, T. Zeiger, H. Rohde, H. C. Nägerl, J. Eschner, D. Leibfried, F. Schmidt-Kaler, and R. Blatt, “Quantum state engineering on an optical transition and decoherence in a Paul trap,” Phys. Rev. Lett.83(23), 4713–4716 (1999). [CrossRef]
  5. B. B. Blinov, D. Leibfried, C. Monroe, and D. J. Wineland, “Quantum computing with trapped ion hyperfine qubits,” Quant. Inform. Process.3(1-5), 45–59 (2004). [CrossRef]
  6. F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G. P. T. Lancaster, T. Deuschle, C. Becher, C. F. Roos, J. Eschner, and R. Blatt, “Realization of the Cirac-Zoller controlled-NOT quantum gate,” Nature422(6930), 408–411 (2003). [CrossRef] [PubMed]
  7. D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. M. Itano, B. Jelenković, C. Langer, T. Rosenband, and D. J. Wineland, “Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate,” Nature422(6930), 412–415 (2003). [CrossRef] [PubMed]
  8. S. Gulde, M. Riebe, G. P. T. Lancaster, C. Becher, J. Eschner, H. Häffner, F. Schmidt-Kaler, I. L. Chuang, and R. Blatt, “Implementation of the Deutsch-Jozsa algorithm on an ion-trap quantum computer,” Nature421(6918), 48–50 (2003). [CrossRef] [PubMed]
  9. K.-A. Brickman, P. C. Haljan, P. J. Lee, M. Acton, L. Deslauriers, and C. Monroe, “Implementation of Grover's quantum search algorithm in a scalable system,” Phys. Rev. A72(5), 050306 (2005). [CrossRef]
  10. M. Riebe, H. Häffner, C. F. Roos, W. Hänsel, J. Benhelm, G. P. T. Lancaster, T. W. Körber, C. Becher, F. Schmidt-Kaler, D. F. V. James, and R. Blatt, “Deterministic quantum teleportation with atoms,” Nature429(6993), 734–737 (2004). [CrossRef] [PubMed]
  11. M. D. Barrett, J. Chiaverini, T. Schaetz, J. Britton, W. M. Itano, J. D. Jost, E. Knill, C. Langer, D. Leibfried, R. Ozeri, and D. J. Wineland, “Deterministic quantum teleportation of atomic qubits,” Nature429(6993), 737–739 (2004). [CrossRef] [PubMed]
  12. D. Leibfried, M. D. Barrett, T. Schaetz, J. Britton, J. Chiaverini, W. M. Itano, J. D. Jost, C. Langer, and D. J. Wineland, “Toward Heisenberg-limited spectroscopy with multiparticle entangled states,” Science304(5676), 1476–1478 (2004). [CrossRef] [PubMed]
  13. C. F. Roos, M. Chwalla, K. Kim, M. Riebe, and R. Blatt, “‘Designer atoms’ for quantum metrology,” Nature443(7109), 316–319 (2006). [CrossRef] [PubMed]
  14. P. O. Schmidt, T. Rosenband, C. Langer, W. M. Itano, J. C. Bergquist, and D. J. Wineland, “Spectroscopy using quantum logic,” Science309(5735), 749–752 (2005). [CrossRef] [PubMed]
  15. C. W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy Al+ optical clocks,” Phys. Rev. Lett.104(7), 070802 (2010). [CrossRef] [PubMed]
  16. V. Letchumanan, P. Gill, E. Riis, and A. G. Sinclair, “Optical Ramsey spectroscopy of a single trapped 88Sr+ ion,” Phys. Rev. A70(3), 033419 (2004). [CrossRef]
  17. V. Letchumanan, P. Gill, A. G. Sinclair, and E. Riis, “Optical-clock local-oscillator stabilization scheme,” J. Opt. Soc. Am. B23(4), 714–717 (2006). [CrossRef]
  18. N. Huntemann, B. Lipphardt, M. Okhapkin, C. Tamm, E. Peik, A. V. Taichenachev, and V. I. Yudin, “Generalized ramsey excitation scheme with suppressed light shift,” Phys. Rev. Lett.109(21), 213002 (2012). [CrossRef] [PubMed]
  19. M. Kasevich and S. Chu, “Laser cooling below a photon recoil with three-level atoms,” Phys. Rev. Lett.69(12), 1741–1744 (1992). [CrossRef] [PubMed]
  20. A. Peters, K. Y. Chung, and S. Chu, “High-precision gravity measurements using atom interferometry,” Metrologia38(1), 25–61 (2001). [CrossRef]
  21. M. J. Snadden, J. M. McGuirk, P. Bouyer, K. G. Haritos, and M. A. Kasevich, “Measurement of the Earth's gravity gradient with an atom interferometer-based gravity gradiometer,” Phys. Rev. Lett.81(5), 971–974 (1998). [CrossRef]
  22. T. L. Gustavson, P. Bouyer, and M. A. Kasevich, “Precision rotation measurements with an atom interferometer gyroscope,” Phys. Rev. Lett.78(11), 2046–2049 (1997). [CrossRef]
  23. S.-W. Chiow, T. Kovachy, H.-C. Chien, and M. A. Kasevich, “102ℏk large area atom interferometers,” Phys. Rev. Lett.107(13), 130403 (2011). [CrossRef] [PubMed]
  24. S.-W. Chiow, T. Kovachy, J. M. Hogan, and M. A. Kasevich, “Generation of 43 W of quasi-continuous 780 nm laser light via high-efficiency, single-pass frequency doubling in periodically poled lithium niobate crystals,” Opt. Lett.37(18), 3861–3863 (2012). [CrossRef] [PubMed]
  25. M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, “A single-photon server with just one atom,” Nat. Phys.3(4), 253–255 (2007). [CrossRef]
  26. P. B. R. Nisbet-Jones, J. Dilley, A. Holleczek, O. Barter, and A. Kuhn, “Photonic qubits, qutrits and ququads accurately prepared and delivered on demand,” New J. Phys.15(5), 053007 (2013). [CrossRef]
  27. M. H. Levitt, “Composite pulses,” Prog. Nucl. Mag. Res. Sp.18(2), 61–122 (1986). [CrossRef]
  28. A. Sørensen and K. Mølmer, “Quantum computation with ions in thermal motion,” Phys. Rev. Lett.82(9), 1971–1974 (1999). [CrossRef]
  29. J. Benhelm, G. Kirchmair, C. F. Roos, and R. Blatt, “Towards fault-tolerant quantum computing with trapped ions,” Nat. Phys.4(6), 463–466 (2008). [CrossRef]
  30. J. Benhelm, G. Kirchmair, C. F. Roos, and R. Blatt, “Experimental quantum-information processing with 43Ca + ions,” Phys. Rev. A77(6), 062306 (2008). [CrossRef]
  31. R. Bowler, U. Warring, J. W. Britton, B. C. Sawyer, and J. Amini, “Arbitrary waveform generator for quantum information processing with trapped ions,” Rev. Sci. Instrum.84(3), 033108 (2013). [CrossRef] [PubMed]
  32. B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible Lasers with Subhertz Linewidths,” Phys. Rev. Lett.82(19), 3799–3802 (1999). [CrossRef]
  33. M. M. Boyd, T. Zelevinsky, A. D. Ludlow, S. M. Foreman, S. Blatt, T. Ido, and J. Ye, “Optical atomic coherence at the 1-second time scale,” Science314(5804), 1430–1433 (2006). [CrossRef] [PubMed]
  34. R. Blatt and D. Wineland, “Entangled states of trapped atomic ions,” Nature453(7198), 1008–1015 (2008). [CrossRef] [PubMed]
  35. F. Riehle, Th. Kisters, A. Witte, J. Helmcke, and C. J. Bordé, “Optical Ramsey spectroscopy in a rotating frame: Sagnac effect in a matter-wave interferometer,” Phys. Rev. Lett.67(2), 177–180 (1991). [CrossRef] [PubMed]
  36. P. Gill, W. Murray, and M. H. Wright, Practical Optimization (Emerald, 1982).
  37. F. J. Harris, “On the use of windows for harmonic analysis with the discrete Fourier transform,” Proc. IEEE66(1), 51–83 (1978). [CrossRef]
  38. B. Abraham and J. Ledolter, Statistical Methods for Forecasting (Wiley, 1983).
  39. G. Wilpers, P. See, P. Gill, and A. G. Sinclair, “A monolithic array of three-dimensional ion traps fabricated with conventional semiconductor technology,” Nat. Nanotechnol.7(9), 572–576 (2012). [CrossRef] [PubMed]
  40. S. S. Ivanov, N. V. Vitanov, and N. V. Korolkova, “Creation of arbitrary Dicke and NOON states of trapped-ion qubits by global addressing with composite pulses,” New J. Phys.15(2), 023039 (2013). [CrossRef]
  41. S. S. Ivanov and N. V. Vitanov, “High-fidelity local addressing of trapped ions and atoms by composite sequences of laser pulses,” Opt. Lett.36(7), 1275–1277 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited