OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 16 — Aug. 12, 2013
  • pp: 18733–18741

Fabrication of metal-oxide nano-hairs for effective index optical elements

Indumathi Raghu Srimathi, Aaron J. Pung, Yuan Li, Raymond C. Rumpf, and Eric G. Johnson  »View Author Affiliations

Optics Express, Vol. 21, Issue 16, pp. 18733-18741 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3183 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a method for fabricating high aspect ratio metal-oxide, sub-wavelength grating structures. These “nano-hair” structures are composed of alumina cylindrical pillars, partially embedded in a supporting fused silica substrate. The fabricated nano-hair structures demonstrate phase control of the transmitted beam while maintaining a peak transmitted power greater than 93% around a central wavelength of λo = 1.55 µm. Based on this principle, discrete and continuous phase functions can be encoded by controlling the lithographic process.

© 2013 OSA

OCIS Codes
(220.3740) Optical design and fabrication : Lithography
(220.4000) Optical design and fabrication : Microstructure fabrication
(050.2065) Diffraction and gratings : Effective medium theory
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Optical Design and Fabrication

Original Manuscript: June 19, 2013
Revised Manuscript: July 19, 2013
Manuscript Accepted: July 21, 2013
Published: July 30, 2013

Indumathi Raghu Srimathi, Aaron J. Pung, Yuan Li, Raymond C. Rumpf, and Eric G. Johnson, "Fabrication of metal-oxide nano-hairs for effective index optical elements," Opt. Express 21, 18733-18741 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. K. Gaylord and M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE73(5), 894–937 (1985). [CrossRef]
  2. S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP2, 466–475 (1956).
  3. W. Stork, N. Streibl, H. Haidner, and P. Kipfer, “Artificial distributed-index media fabricated by zero-order gratings,” Opt. Lett.16(24), 1921–1923 (1991). [CrossRef] [PubMed]
  4. H. Haidner, J. T. Sheridan, and N. Streibl, “Dielectric binary blazed gratings,” Appl. Opt.32(22), 4276–4278 (1993). [CrossRef] [PubMed]
  5. F. T. Chen and H. G. Craighead, “Diffractive phase elements based on two-dimensional artificial dielectrics,” Opt. Lett.20(2), 121–123 (1995). [CrossRef] [PubMed]
  6. C. Zhang, S. Liu, T. Shi, and Z. Tang, “Fitting-determined formulation of effective medium approximation for 3D trench structures in model-based infrared reflectrometry,” J. Opt. Soc. Am. A28(2), 263–271 (2011). [CrossRef] [PubMed]
  7. C. Sauvan, P. Lalanne, and M. S. Lee, “Broadband blazing with artificial dielectrics,” Opt. Lett.29(14), 1593–1595 (2004). [CrossRef] [PubMed]
  8. H. J. Hyvärinen, P. Karvinen, and J. Turunen, “Polarization insensitive resonance-domain blazed binary gratings,” Opt. Express18(13), 13444–13450 (2010). [CrossRef] [PubMed]
  9. B. Wang, X. P. Zhang, W. J. Song, P. Cui, Y. Zhang, and G. T. Fei, “Fabrication of transmission phase gratings on porous anodic alumina,” Opt. Lett.35(5), 727–729 (2010). [CrossRef] [PubMed]
  10. W. Freese, T. Kämpfe, E. B. Kley, and A. Tünnermann, “Design of binary subwavelength multiphase level computer generated holograms,” Opt. Lett.35(5), 676–678 (2010). [CrossRef] [PubMed]
  11. F. T. Chen and H. G. Craighead, “Diffractive lens fabricated with mostly zeroth-order gratings,” Opt. Lett.21(3), 177–179 (1996). [CrossRef] [PubMed]
  12. J. N. Mait, A. Scherer, O. Dial, D. W. Prather, and X. Gao, “Diffractive lens fabricated with binary features less than 60 nm,” Opt. Lett.25(6), 381–383 (2000). [CrossRef] [PubMed]
  13. G. Bloom, C. Larat, E. Lallier, M. S. Lee-Bouhours, B. Loiseaux, and J. P. Huignard, “Design and optimization of a high-efficiency array generator in the mid-IR with binary subwavelength grooves,” Appl. Opt.50(5), 701–709 (2011). [CrossRef] [PubMed]
  14. E. B. Grann, M. G. Varga, and D. A. Pommet, “Optimal design for antireflective tapered two-dimensional subwavelength grating structures,” J. Opt. Soc. Am. A12(2), 333–339 (1995). [CrossRef]
  15. C. H. Chang, J. A. Dominguez-Caballero, H. J. Choi, and G. Barbastathis, “Nanostructured gradient-index antireflection diffractive optics,” Opt. Lett.36(12), 2354–2356 (2011). [CrossRef] [PubMed]
  16. P. Srinivasan, M. K. Poutous, Z. A. Roth, Y. O. Yilmaz, R. C. Rumpf, and E. G. Johnson, “Spatial and spectral beam shaping with space-variant guided mode resonance filters,” Opt. Express17(22), 20365–20375 (2009). [CrossRef] [PubMed]
  17. A. G. Lopez and H. G. Craighead, “Subwavelength surface-relief gratings fabricated by microcontact printing of self-assembled monolayers,” Appl. Opt.40(13), 2068–2075 (2001). [CrossRef] [PubMed]
  18. G. Ghosh, Handbook of Thermo-Optic Coefficients of Optical Materials with Applications (Academic Press, 1998).
  19. B. H. Kleemann, M. Seesselberg, and J. Ruoff, “Design concepts for broadband high-efficiency DOEs,” J. Eur. Opt. Soc. Rapid Publ.3, 08015 (2008). [CrossRef]
  20. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am.71(7), 811–818 (1981). [CrossRef]
  21. A. J. Pung, S. R. Carl, I. R. Srimathi, and E. G. Johnson, “Method of fabrication for encapsulated polarizing resonant gratings,” IEEE Photon. Technol. Lett.25(15), 1432–1434 (2013). [CrossRef]
  22. P. Srinivasan, Z. A. Roth, M. K. Poutous, and E. G. Johnson, “Novel method for the fabrication of spatially variant structures,” J. Micro/Nanolith. MEMS-MOEMS8, 013010–013018 (2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited