OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 16 — Aug. 12, 2013
  • pp: 18805–18811

Young’s experiment with a double slit of sub-wavelength dimensions

Kanghee Lee, Jongseok Lim, and Jaewook Ahn  »View Author Affiliations


Optics Express, Vol. 21, Issue 16, pp. 18805-18811 (2013)
http://dx.doi.org/10.1364/OE.21.018805


View Full Text Article

Enhanced HTML    Acrobat PDF (1303 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report that the interference pattern of Young’s double-slit experiment changes as a function of polarization in the sub-wavelength diffraction regime. Experiments carried out with terahertz time-domain spectroscopy reveal that diffracted waves from sub-wavelength-scale slits exhibit either positive or negative phase shift with respect to Gouy phase depending on the polarization. Theoretical explanation based on the induction of electric current and magnetic dipole in the vicinity of the slits shows an excellent agreement with the experimental results.

© 2013 OSA

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(050.5080) Diffraction and gratings : Phase shift
(300.6495) Spectroscopy : Spectroscopy, teraherz
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

History
Original Manuscript: June 28, 2013
Revised Manuscript: July 23, 2013
Manuscript Accepted: July 23, 2013
Published: July 31, 2013

Citation
Kanghee Lee, Jongseok Lim, and Jaewook Ahn, "Young’s experiment with a double slit of sub-wavelength dimensions," Opt. Express 21, 18805-18811 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-16-18805


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Hecht, Optics, 4th ed. (Addison Wesley, 2002).
  2. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999).
  3. F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett.90, 213901 (2003). [CrossRef] [PubMed]
  4. C. Wang, C. Du, and X. Luo, “Refining the model of light diffraction from a subwavelength slit surrounded by grooves on a metallic film,” Phys. Rev. B74, 245403 (2006). [CrossRef]
  5. Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett.86, 5601 (2001). [CrossRef] [PubMed]
  6. F. Yang and J. R. Sambles, “Resonant transmission of microwaves through a narrow metallic slit,” Phys. Rev. Lett.89, 063901 (2002). [CrossRef] [PubMed]
  7. M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photon.3, 152–156 (2009). [CrossRef]
  8. J. H. Kang, D. S. Kim, and Q. Park, “Local Capacitor Model for Plasmonic Electric Field Enhancement,” Phys. Rev. Lett.102, 093906 (2009). [CrossRef] [PubMed]
  9. E. H. Khoo, E. P. Li, and K. B. Crozier, “Plasmonic wave plate based on subwavelength nanoslits,” Opt. Lett.36, 2498–2500 (2011). [CrossRef] [PubMed]
  10. P. F. Chimento, N. V. Kuzmin, J. Bosman, P. F. A. Alkemade, G. W.’t Hooft, and E. R. Eliel, “A subwavelength slit as a quarter-wave retarder,” Opt. Express19, 24219–24227 (2011). [CrossRef] [PubMed]
  11. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev.66, 163–182 (1944). [CrossRef]
  12. M. Yi, K. Lee, J. D. Song, and J. Ahn, “Terahertz phase microscopy in the sub-wavelength regime,” Appl. Phys. Lett.100, 161110 (2012). [CrossRef]
  13. K. Lee, M. Yi, S. E. Park, and J. Ahn, “Phase-shift anomaly caused by subwavelength-scale metal slit or aperture diffraction,” Opt. Lett.38, 166–168 (2013). [CrossRef] [PubMed]
  14. D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B7, 2006–2015 (1990). [CrossRef]
  15. Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, 2009).
  16. P. C. M. Planken, H.-K. Nienhuys, H. J. Bakker, and T. Wenckebach, “Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe,” J. Opt. Soc. Am. B18, 313–317 (2001). [CrossRef]
  17. Y. Kim, M. Yi, B. G. Kim, and J. Ahn, “Investigation of THz birefringence measurement and calculation in Al2O3 and LiNbO3,” Appl. Opt.50, 2906–2910 (2011). [CrossRef] [PubMed]
  18. L. G. Gouy, “Sur une propriete nouvelle des ondes lumineuses,” C. R. Acad. Sci. Paris110, 1251–1253 (1890).
  19. A. Rubinowicz, “On the anomalous propagation of phase in the focus,” Phys. Rev.54, 931–936 (1938). [CrossRef]
  20. A. E. Siegman, Lasers (University Science Books, 1986).
  21. A. B. Ruffin, J. V. Rudd, J. F. Whitaker, S. Feng, and H. G. Winful, “Direct observation of the Gouy phase shift with single-cycle Terahertz pulses,” Phys. Rev. Lett.83, 3410–3413 (1999). [CrossRef]
  22. S. Feng and H. G. Winful, “Physical origin of the Gouy phase shift,” Opt. Lett.26, 485–487 (2001). [CrossRef]
  23. K. Lee, “Fourier optical phenomena and applications using ultra broadband terahertz waves,” Ph. D. Thesis, KAIST (2013).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited